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9. CELL GROWTH AND DIVISION
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The central mission of all cells – to survive and reproduce – is a product of the re-
lentless operation of natural selection. For unicellular organisms, the matter of cel-
lular reproduction naturally brings us into contact with the issue of cellular growth.
Typically, cells double in size and then reproduce by binary fission, although there
are cases in which offspring and adult cell sizes differ by more than two-fold, e.g.,
budding in some yeast, and multiple internal fissions in some algae. The essential
issue is that continuous proliferation of a population requires the growth and di-
vision of individual cells, which requires the intake and conversion of nutrients to
biomolecules.

Here, we focus on several general challenges that exist for any growth mecha-
nism, deferring the molecular details on resource uptake and cell fission to subse-
quent chapters (10 and 18, respectively). First, cell growth requires coordination
between the intake of resources and their conversion into cellular material. Even the
simplest of cells consist of thousands of types of molecules, so the overall process may
seem hopelessly beyond mechanistic interpretation. However, some aspects of cell
growth can be understood in general terms using models incorporating a minimum
level of molecular complexity.

Second, in relating growth in cellular biomass to the matter of reproduction, the
issue arises as to how a cell decides when to undergo fission. In principle, cells might
simply divide after a critical time period has passed, although this would require
slowing the clock down in nutrient-poor environments. Alternatively, division might
be delayed until a critical cell size (possibly environmentally determined) is reached.
Still another possibility is that the license to divide is based on the attainment of
a specific growth increment, in which case the size at division would be defined
by the prior size at birth. Regardless of the target criterion, cells must generally
possess compensatory mechanisms to prevent runaway growth or diminution in size
in extreme individuals.

Third, cell division is not a perfect process. Some size variation among sister
cells always results from binary fission, and this is inevitably accompanied by vari-
ance in the partitioning of the parental-cell contents. Entirely a consequence of the
limits to the perfection of cell-division mechanisms, such variation generates phe-
notypic variation even in otherwise genetically uniform populations, and at a level
that is potentially much higher than in multicellular species. Some have argued
that the production of phenotypic variation has been promoted by natural selection
as a bet-hedging strategy to cope with heterogeneous environments. However, as
discussed below, nongenetic sources of phenotypic variation reduce the efficiency of
natural selection and impose long-term fitness loads, leaving many open questions
on this matter.
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The following pages attempt to summarize what we know about these issues.
Remarkably, however, the depth of understanding of the mechanistic determinants
of the emergent properties of size and growth rate lags that for many of the more
intricate and lower-level molecular features of cells.

Ribosomes and Cell Growth

Given that protein constitutes a large fraction of cell mass, before considering the
more quantitative aspects of growth, an overview of the molecular machine dedicated
to protein production is in order. Cells make enormous investments in ribosomes,
with up to 50% of all transcription being devoted to the production of ribosomal
RNA (rRNA, the catalytic heart of the ribosome) and up to 50% of messenger RNA
(mRNA) production allocated to the production of ribosomal proteins147. Each
ribosome can process only one mRNA at a time, and ribosomes are energetically
expensive to produce, so strong regulatory associations between cellular growth
rates and the number of ribosomes per cell can be expected. Overly low numbers
of ribosomes relative to the cellular supply of nutrients compromises the rate of
production of cellular biomass, but excess investment in ribosomes diverts energy
from other cellular processes essential to resource acquisition.

Consistent with this expectation, for all species in which the issue has been
addressed, there is a strong and essentially linear relationship between cell growth
rate and the ratio of total RNA to total protein mass in the cell (Figure 9.1A). In
other words, there is a predictable shift in the molecular contents of cells as they
are exposed to more nutrient-rich environments. Generally, the RNA/protein mass
ratio is in the range of 0.1 to 0.2 at low growth rates, and then increases to ∼0.5 or
even more in the fastest growing cells. These types of responses are retained even
when the growth-rate differences are created by varying the types of substrates (as
opposed to altering the concentration of a single limiting nutrient)44,113. Thus, the
level of RNA production is regulated by an indirect connection with the growth rate
itself, rather than by direct resource-specific signals.

Although the patterns illustrated in Figure 9.1A refer to the total RNA in a cell,
additional data suggest a coordinated response for mRNAs, tRNAs, and rRNAs,
such that the number of ribosomes per cell also scales directly with the cellular
growth rate. For most species that have been examined, the ratio of rRNA to total
RNA in cells falls in the range of 0.55 to 0.88, typically not deviating by more than
0.15 between different growth rates (Figure 9.1B). Thus, with increasing nutrient
availability, the number of ribosomes per cell increases in a coordinated way with
the growth rate.

Such proportionality arises from various feedback mechanisms. Ribosome bio-
genesis is often controlled indirectly by the level of free rRNA in the cell, the produc-
tion of which is in turn regulated via the amount of uncharged tRNAs78. In E. coli,
for example, an alarmone (guanosine tetraphosphate or ppGpp) is produced when
uncharged tRNAs (transfer RNAs unattached to amino acids) accumulate in the
face of an inadequate supply of amino acids, and the reduced translational rate of
elongation suppresses rRNA production101,151. When ribosomal proteins are in ex-
cess in the cell relative to the rRNAs with which they must assemble, the former bind
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to their own mRNAs, thereby repressing their own production. In contrast, in the
soil bacterium Bacillus subtilis, inhibition of rRNA production results from a drop
in cellular GTP levels (a result of enhanced incorporation of GTP into ppGpp)71. A
variety of other mechanisms exist in eukaryotes96,147. Such evolutionary wandering
of mechanisms regulating otherwise highly conserved functions will be encountered
for a number of other cellular traits in the following pages.

A relatively simple theoretical argument potentially explains the linear relation-
ship between investment in ribosomes and growth rate (Foundations 9.1). Assuming
that all but a small fixed fraction of ribosomes is actively engaged in translation and
that active ribosomes are generally saturated with mRNAs, the overall growth rate
can only be enhanced by increasing the translation rate per ribosome and/or the
number of ribosomes per cell. For species with available data, translation rates per
ribosome generally change by no more than a factor of two over a scale in which
the cell growth rate varies by up to two orders of magnitude (Figure 9.1C). Thus,
elevated investment in ribosomes appears to be the dominant mechanism by which
cells increase protein production.

Under this view, a plot of the mass ratio of ribosomal protein to total protein
against the cell growth rate (Equation 9.1.3) has a specific biological meaning – the
y intercept is a measure of the investment in inactive ribosomes relative to the total
pool of proteins, and the inverse of the slope is a measure of the rate of protein
mass produced per mass of ribosomal protein. Figure 9.1A provides such a plot for
E. coli, except that the y-axis values need to be multiplied by 0.53 to convert to
the ribosomal protein ratio for this species117. Although E. coli will be used as an
exemplar in the following analyses, this species has a distinctly lower intercept and
slope for the response plot than in other species, meaning that E. coli achieves a
maximum growth rate with a relatively low investment in RNA (and presumably
ribosomes).

The total investment in ribosomal proteins in E. coli can be obtained by mul-
tiplying the total RNA/total protein mass ratio by the average rRNA/total RNA
ratio of 0.62 (Ref. 33), and then by the ratio of ribosomal protein to rRNA mass of
0.53. From Figure 9.1A, this leads to the conclusion that ∼ 3% of the protein in a
nongrowing E. coli cell is associated with ribosomes. This is in reasonable agree-
ment with a more direct estimate of ∼ 8% associated with nontranslating ribosomes
in budding yeast85. Although little work has been done on the matter, in E. coli,
and likely other bacteria, ribosomes dimerize and become translationally quiescent
under nutritionally starved states141,152. A non-zero reserve at near-zero growth
rate is not too surprising, as complete ribosome loss sentences a cell to death by
eliminating any possibility of responding to improved nutrient conditions90.

The fractional investment in ribosomal proteins increases to 28% for cells grow-
ing at maximum rate, and when the total amount of accessory proteins associated
with translation is added in, this number needs to be multiplied by ∼ 1.7 to deter-
mine the total investment in the process of translation117. Thus, a rapidly growing E.
coli cell devotes nearly 50% of its protein to translation. Although the data are less
extensive, eukaryotes have higher total RNA/total protein and rRNA/total RNA
mass ratios than bacteria (Figure 9.1A,B), as well as higher numbers of ribosomal
proteins per ribosome (Chapter 6). This means that to achieve equivalent growth
rates eukaryotic cells must make an even larger fractional investment in ribosome
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production than prokaryotes.
The results in Figure 9.1 can also be used to estimate the absolute upper bound

on the growth rate, by considering the expected division time of a hypothetical cell
consisting of nothing but translational machinery. The inverse of the slope in Figure
9.1A implies a rate of protein mass produced per unit ribosome mass per hour of 7.5.
In other words, a healthy E. coli ribosome can replace its own protein constituents
in about 60/7.5 = 8 minutes.

The upper limit to the growth rate can also be calculated more directly by
considering the number of amino acids per ribosome and the upper bound to the rate
of translation (again, assuming that the cell consists of nothing but actively engaged
translation machinery). The full set of bacterial ribosomal proteins comprising an
individual ribosome contains ∼ 7, 500 amino acids, and the upper bound to the
translation rate is ∼ 20 amino acids/ribosome/second (Figure 9.1C). If one then
liberally assumes that an extended ribosome (the complete translational machinery)
contains twice as many amino acids as the ribosome itself, then the time required
for complete replacement of an extended ribosome rate is (2 ·7500)/20 = 750 seconds,
or 12.5 minutes, in excellent agreement with the prior calculation (which ignored
accessory proteins).

Thus, without an increase in the rate of translation or a decrease in the size
of an extended ribosome, the cell-division time in an E. coli-like bacterium cannot
be reduced below ∼ 12.5 minutes, indicating that the massive cost of the ribosome
itself imposes a significant limit on the rate of cell division. Under optimal growth
conditions, some bacteria such as Vibrio natriegens have doubling times very close
to this ultimate limit (Chapter 8).

Models for Cellular Growth

Natural selection promotes phenotypes that maximize the rate of entry of progeny
into the subsequent generation, which requires both reproduction and survival.
Here, we consider the issues in a very general sense, with an initial focus on simple
expressions for the response of cell-division rates to the concentration of a limiting
nutrient, e.g., glucose for a laboratory-grown bacterium, or phosphorus for a plank-
tonic alga. This will then be followed by an exploration of how cell size and division
time are set and interrelated.

As discussed below, even in a constant environment, substantial variation typi-
cally exists in the division times of individual cells, owing to internal stochastic pro-
cesses. Nonetheless, an ensemble of cells can be described by the average population-
level rate of increase r. Letting N0 and Nt denote population sizes at two points in
time, then assuming constant conditions,

Nt = N0e
rt (9.1)

describes the trajectory of numbers of individuals over this period (Foundations
9.1). Defined in this way, r is a measure of the per-capita exponential growth rate
(with units of time−1). Taking logarithms and rearranging,

r =
lnNt − lnN0

t
. (9.2)
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The doubling time for population size, obtained by setting Nt/N0 = 2, is

td = ln(2)/r. (9.3)

Like interest in a bank account, the doubling time of ' 0.693/r is less than expected
under linear growth.

The preceding expressions apply to the special situation in which a population is
expanding in a nutritionally constant environment, but of course, no population can
grow exponentially for an indefinite period of time. In more general applications
in population biology, r is usually used to describe the actual rate of population
growth, which reflects the net difference between birth and death rates, r = b − d.
In this chapter, however, the focus is primarily on laboratory cultures, where there
is typically very little direct cell death. In that case, r can be viewed as the rate
of cell birth (r ' b because d ' 0), which with a constant steady-state distribution
of cell sizes at division, is equivalent to the exponential rate of increase in cellular
biomass65. In a laboratory culture where cells are being regularly drawn off (as in
a chemostat; Figure 8.3), the birth rate can be kept indefinitely at a constant level
(equal to the dilution rate, d, because r = b− d = 0 within the growth chamber).

From observations on bacteria grown under constant conditions, Monod89 con-
cluded that the growth-rate response to a limiting nutrient concentration (S) can
be described by a simple hyperbolic function,

r = rmax

(
S

Kr + S

)
, (9.4a)

where rmax is the maximum rate of growth (asymptotically approached as S →∞),
and Kr is the half-saturation constant for growth (equivalent to the resource con-
centration at which r = rmax/2). As will be discussed in Chapter 18, this formula is
identical in form to the commonly employed Michaelis-Menten equation for nutrient
uptake and other enzymatic reactions,

u = umax

(
S

Ku + S

)
, (9.4b)

where Ku is the half-saturation constant for uptake, which is not necessarily equal
to Kr.

Numerous other models have been proposed to link growth rate to nutrient
availability. For example, with a focus on algal cells in continuous culture, Droop36,37

considered a construct in which the growth rate depends on the internal cellular
concentration of the limiting nutrient (Q, commonly referred to as the cell quota),

r = rmax

(
1− φ

Q

)
. (9.5)

Under this model, cell division ceases when Q drops below the critical internal con-
centration φ, and r asymptotically approaches the maximum possible value rmax as
the internal nutritional state Q increases. An attractive feature of this expression
is that cell growth is more naturally connected with internal than external nutrient
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levels. Although internal nutrient pools are not necessarily easy to estimate, mea-
sures of r and Q in nutrient-limited cultures of single species of phytoplankton have
repeatedly supported the general form of Equation 9.5 (Figure 9.2).

Despite its different functional underpinnings, the structure of Equation 9.5 is
entirely compatible with the Monod growth equation. This can be seen by noting
that for a system in steady-state, the rate of nutrient uptake must equal the product
of the cell quota and the rate of cell growth, i.e., u = r · Q, which implies a cell
quota equal to the ratio of rates of uptake and growth, Q = u/r. Substituting this
expression into Equation 9.5 and rearranging yields

r = rmax

(
u

(rmaxφ) + u

)
, (9.6)

which again has the form of a hyperbolic relationship, in this case between r and
the rate of nutrient uptake. If Equation 9.4b is substituted for u here, a more
complex expression is obtained in terms of S and the uptake parameters, but this
is still hyperbolic with respect to the external nutrient concentration S, recovering
the form of Equation 9.4a.

Equations 9.4a and 9.5 have been used to describe thousands of growth re-
sponses, and are often referred to as growth laws. However, the models are phe-
nomenological in the sense that they do not explicitly describe any of the underly-
ing cellular mechanisms connecting substrate uptake, utilization, and growth. They
simply describe general growth responses to nutrient limitation with a minimum
amount of detail. More complex models have been proposed. For example, Maitra
and Dill83 and Weiße et al.149 presented formulations that include ribosomes, other
RNAs, protein, and ATP as the underlying variables, in both cases generating pre-
dictions that are consistent with the Monod-growth model and ribosome-growth
coupling noted above. Models with an intermediate level of complexity, describing
rmax and Kr in mechanistic terms associated with the translational capacity of ribo-
somes and the nutritional capacity of the environment are outlined in Foundations
9.2. These provide a satisfying explanation for the response of ribosome investment
to increased nutrient availability noted in the preceding section.

Control of Cell Size

As discussed in the previous chapter, cell volumes vary by approximately eleven
orders of magnitude among unicellular species. Within-species variation also ex-
ists as a consequence of prevailing environmental conditions, stochastic variation
in cell volume arising during division, and position in the cell-division cycle (age
variation). Nonetheless, under any particular environmental setting, the range of
cell sizes within a species is generally fairly narrow, with standard deviations well
below the mean. This implies the existence of homeostatic mechanisms for cell-size
regulation.

Under constant conditions, the average rate of increase in cell size (per unit
biomass) between divisions must equal the average rate of increase in cell number,
i.e., the rate of cell division. If this were not the case, cell size would become
progressively smaller or larger. In other words, at steady state, cells must double
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in size at the same rate that the population doubles in cell number. This, however,
leaves open the possibility of a diversity of patterns of biomass growth within the
life span of a cell. Resolving this issue is critical to understanding how cell size and
division time are jointly determined.

As outlined above, the numbers of cells within expanding populations kept at
constant environmental conditions increase exponentially in time. If individual cells
grew in a parallel manner, under steady-state conditions, cell volume would grow in
accordance with Equation 9.1,

Vt = V0e
rt, (9.7)

where V0 is the size of a newborn cell, and Vt is its size t time units later. Under
this model, the proportional rate of change in cell volume is independent of cell size,
although larger cells grow more rapidly in an absolute sense.

Exponential growth specifically implies that the metabolic features of grow-
ing cells remain constant, independent of size, with the ensemble of constituent
molecules operating via a fixed set of reaction rates per unit cytoplasmic volume.
However, exponential growth in cell size is not essential for balanced growth. The
only requirement is that cumulative cellular biomass doubles from birth to death,
i.e., matches the rate of increase in cell number. In principle, growth might be linear,
with the rate of acquisition of biomass being independent of cell size, or sigmoidal,
with the rate of cell growth initially accelerating and then decelerating as a critical
size is approached.

Nonetheless, observations on the growth of individual cells for multiple bacte-
rial species support the exponential cell-growth model (or something very close to
it)20,58,95,112,125,143, with no known striking exceptions. In addition, this particular
model extends to eukaryotes. Godin et al.50 and Bryan et al.18 observed exponential
growth not only in the bacteria E. coli and B. subtilis, but also in the yeast S.
cerevisiae and mouse lymphoblast cells, and similar observations have been made
on human osteosarcoma cells86 and in the ciliate Paramecium tetraurelia68.

In terms of cell-size homeostasis, however, there remains a problem. Owing to
stochasticities arising during division, not all cells have exactly the same size at birth.
How then are the sizes of consecutive cells produced within a lineage regulated so as
to prevent overly small/large cells from spawning ever more extreme descendants?
If cells simply grew exponentially for a specified time before division, following a
timer model, those that were larger at birth would grow more over the specified
duration, leading to a potentially runaway size distribution (Figure 9.3). Under an
alternative sizer model, cells might be programmed to divide once a critical volume
is reached.

For the best-studied organism, E. coli, both of these models come up short.
Instead, for a given environment, cells appear to add an approximately constant
volume (∆) prior to division127 (Figure 9.4). This adder model leads to a simple
mechanism of cell-size homeostasis, with the steady-state expected offspring size
being equal to ∆. Contrary to the sizer model, the adder model predicts that larger
newborn cells will divide at larger sizes (with expected volume V0+∆), in effect being
oblivious to their initial size. Nonetheless, with ∆ remaining independent of size,
the adder model also predicts that cells with extreme size will produce descendants
progressively returning to the expected size ∆. The simple basis for such homeostasis
can be seen by the following argument.
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If a newborn cell is larger than ∆, say by an amount v, then cell division will
occur at expected size (v+∆)+∆ = v+2∆, and the average offspring size will be half
that, (v/2) + ∆, and hence shifted back towards the long-term expected value ∆ by
an amount v/2. The opposite (a shift towards larger offspring size) occurs if an off-
spring cell happens to be slightly smaller than ∆. In both cases, the deviations from
the expected newborn size decline over time, insuring rapid convergence back to ∆.

These arguments ignore new deviations that arise at each subsequent division, and
the actual damping process is less smooth than this simple description implies129,
with individual cells having unique response behaviors, presumably reflecting id-
iosyncratic stochasticities125. Nonetheless, the overall condition of homeostasis is
retained.

As can be seen in Figure 9.4, the behavior of E. coli cells at the extreme ends
of the size spectrum deviates slightly from the expectations of this simple adder
model, which assumes independence between the parental cell size and the subse-
quent growth increment. Instead, the latter appears to decline with increasing cell
size. Such second-order effects can be accommodated by a simple modification of the
growth-increment expression32,65,125. Consider, for example, the situation in which
there is some memory of parental cell-size at birth (Vp) such that the predicted off-
spring size is V0 = αVp+∆. Setting V0 = Vp yields an equilibrium cell size of ∆/(1−α),

which implies homeostasis provided −1 < α < 1. If α < −1, cell-size declines to zero,
whereas α > 1 leads to runaway cell growth.

This more general model accommodates a wide range of species. The one mem-
ber of the archaea in which the growth properties have been investigated, Halobac-
terium salinarum, appears to adhere closely to the pure adder model40. However,
two bacterial species with asymmetric cell division, Caulobacter crescentus20,58 and
Mycobacterium smegmatis79,105,112, as well as the symmetrically dividing bacterium
Pseudomonas aeruginosa31 have slightly positive values of 0 < α < 1. In contrast,
budding yeast S. cerevisiae27,35,121,122 and fission yeast S. pombe41,126 have negative
values of α.

Finally, the form of a growth model has implications for response of cell-division
time to size at birth. For example, under an adder model of cell division, cells that
are larger at birth divide at an earlier age because the additive increment ∆ is
achieved more rapidly. From the form of the exponential-growth model (Equation
9.7), the division time for a cell of initial size V0 under the pure adder model is

td =
ln[1 + (∆/V0)]

r
, (9.8)

yielding a predicted decline in td with increasing V0, consistent with observations
in E. coli (Figure 9.4). As discussed below, in a dynamically growing population,
this may lead to an equilibrium mean offspring size > ∆, as offspring of large-size
deviants will be promoted into the population at a higher rate than those of small-
size deviants.

Molecular mechanisms of division-size determination. The simple models
just outlined provide a statistical view of the features of cell division, but leave
unanswered questions as to the molecular mechanisms enabling cells to determine
when they have reached the critical threshold for division. Resolving these issues
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is essential to understanding how changes in cell sizes and division times might be
accomplished by evolution.

One model for this decision-making process invokes a burst of cell-division in-
hibitor produced at the time of cell division, which then gradually becomes diluted
as cell volume increases. An alternative model invokes the gradual buildup of an ac-
tivator molecule to the point at which a threshold concentration is exceeded. Simple
mathematical constructs have been developed to explain the features of these alter-
native models3,31,122,123. However, for species in which the molecular underpinnings
of cell-division time have been sought, inhibitor mechanisms have generally come to
the fore (Figure 5).

For example, the soil bacterium Bacillus subtilis determines the time of cell
division by use of a two-component system28,148. The tubulin-like cell-division pro-
tein (FtsZ) acts as a central hub and has a nearly constant concentration under all
nutritional conditions. At high nutrient conditions, an inhibitor molecule (UgtP)
oligomerizes with FtsZ preventing formation of the cytokinetic ring until a relatively
large cell size (diluting UgtP, and freeing up FtsZ molecules) is attained. Under low
nutrient conditions, UgtP is sequestered away from FtsZ, allowing division at a
smaller cell size.

E. coli utilizes a different inhibitor mechanism to determine the time of division.
In this case, an inhibitor molecule oscillates back and forth between the cell poles,
such that a minimum concentration exists at the cell midpoint. Once the inhibitor
concentration drops below a critical point by growth dilution, cell division ensues81.

Inhibitor mechanisms for division-time determination extend to yeasts. The
fission yeast S. pombe utilizes a spatial gradient to sense its size – an activator of
mitosis is centrally located, whereas an inhibitor of the activator has a gradient
initiating at the cell poles; as the cell grows, the inhibitor concentration declines
to the point at which mitosis is activated92. In contrast, in the budding yeast S.
cerevisiae, a short burst of synthesis of a mitosis inhibitor is elicited shortly after cell
division in a size-independent manner77,116,134. Smaller cells, with a higher inhibitor
concentration at birth, must then add more volume to reduce the inhibitor to its
critical concentration to allow mitosis to proceed. A second protein, plays a central
role here, operating as an inhibitor of the mitotic inhibitor, but only becoming
effective upon increasing in abundance late in the growth cycle and reducing the
mitotic inhibitor to a low enough level to allow division initiation.

Remarkably, although all four of these systems rely on mechanisms of inhibition
to determine cell-division time, the molecular details are essentially nonoverlapping.
As in the case of the regulation of ribosome biogenesis (Chapter 6), this implies that
over evolutionary time the basic machinery dictating the key life-history features
of cells – size and age of reproduction – has been rewired on multiple occasions.
How such modifications are made without imperiling the fitness of individuals with
intermediate states is unclear, and constitutes a major challenge for evolutionary cell
biology. Regardless of the underlying evolutionary mechanisms, one should clearly
be wary of Jacob’s59 proclamation that “All that is true for E. coli, is true for the
elephant.”

The above models invoke the monitoring of some sort of molecule to indirectly
forecast the appropriate time for division, but do so in a way that is notably agnostic
with respect to genome replication processes. A related mechanistic proposal, not
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necessarily unconnected with the processes noted above, is that bacterial cell division
is somehow guided by the state of genome replication4,65,119,146, as is the case with the
eukaryotic cell cycle (Chapter 10). The idea here is that bacteria growing at rapid
rates experience pileups of partially replicated, nested genomes as the rate of genome
replication lags behind the rate of production of the remaining cellular constituents.
In one version of this model, the critical determining factor is the ratio between the
number of genome origins of replication (the starting points of duplicating genomes)
and cell volume65,119. This model fairly accurately fits the response of E. coli cell
volume to cell growth rate, predicting an exponential response of cell size to growth
rate, in accordance with some observations (below). The model also predicts that
the negative scaling of cell-division time and size at birth will become increasingly
strong in nutrient-poor environments, as has been seen (Figure 9.4).

However, there are two caveats with respect to this model. First, any number
of other underlying division-time determinants beyond the numbers of origins of
replication (but highly correlated with them) might play a key role. Indeed, rather
different models, with a focus on partitioning of resources between ribosomes and
unspecified division proteins, fit the data just as well13,118, and additional work
suggests that DNA replication and cytoplasmic growth jointly influence the time
to division29. Second, an origin-counting model cannot apply to eukaryotes, which
always undergo a single genome replication per cell division.

These rather unsettling uncertainties aside, the simple models outlined above
(or variants of them) provide a clear path to understanding the molecular basis for
evolutionary changes in cell size/division time via alterations in the concentrations
and/or activities of the products of as few as two genes, e.g., an inhibitor molecule
and its interacting partner. In principle, for example, larger cell size can be achieved
by increasing the burst size of the mitotic inhibitor upon cell division or by reducing
the sensitivity of its partner to inhibition.

Environmental determinants of cell size. Whatever the molecular mecha-
nism of cell-size regulation, it is clear that the key parameters associated with the
system must vary with environmental conditions. For example, cell size typically in-
creases with nutrient availability, which under the adder model implies an increase
in ∆. Such patterns have been clearly documented in E. coli127,158, Salmonella
typhimurium113, and in many other bacteria65. In S. typhimurium and E. coli, there
is a ∼ 5-fold increase in cell volume over the full range of growth rates120,142, whereas
the full response in the photosynthetic cyanobacterium Synechocystis is a 1.5-fold
increase in cell volume157.

A positive relationship between cell volume and nutrient status has also been
documented in unicellular eukaryotes. For example, the ciliate Tetrahymena exhibits
a two-fold increase in cell volume with nutrient availability156, and the budding yeast
S. cerevisiae42,138 and the green alga Chlorella pyrenoidosa106 both have five-fold
ranges. Given this near-universality of the positive physiological response of cell
volume to nutrient availability, it too has often been christened as a “growth law.”

What remains unclear is the extent to which this kind of cell size-growth rate
relationship is driven by adaptive processes, i.e., whether increasing cell volume
under high nutrient conditions somehow enhances the cell-division rate beyond that
expected under constant cell size. Although it is certainly unlikely that such a
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universal response is maladaptive, an argument is made below as to how, under the
adder model, cells phenotypically shifted to larger sizes might passively accumulate
in cultures growing with higher rates of cell division.

Equally unclear is the degree to which the purely physiologically driven cell size-
growth relationship associated with resource availability noted here is related to the
phylogenetic association between cell size and maximum-growth rate outlined in the
preceding chapter (Figure 8.5). On the one hand, the positive association between
maximum cell-division rate and cell size among heterotrophic bacterial species is con-
sistent with the developmental-plasticity pattern. Also consistent with this pattern
is a long-term selection experiment for higher growth rate in E. coli, which yielded a
parallel response in cell volume (Figure 9.5). On the other hand, among eukaryotic
species, maximum cell-division rates decline with increasing cell size (Figure 8.5),
contrary to within-species responses to a shift in nutrient availability (Figure 9.7A).

Why is there a conflict between responses at the evolutionary and physiological
levels in eukaryotes but not in prokaryotes? One possibility is that, despite retaining
the physiological downshift in size under low-nutrient conditions, evolution of the
maximum growth capacity of eukaryotic cells with increasing size is compromised
owing to the reduction in efficiency of natural selection imposed by the increased
power of random genetic drift (Chapter 8). By extension, if this hypothesis is
correct, small- to moderate-sized bacterial species should retain the flexibility to
jointly evolve large cell size and high growth rates (Figure 9.6), whereas eukaryotic
cells should be much more constrained.

Finally, we consider the effects of temperature, one of the most widely vary-
ing environmental parameters influencing cell physiology. Membrane fluidity, diffu-
sion coefficients, and essentially all biochemical reaction rates (within the bounds
of protein stability) increase with increasing temperature (Chapter 7). Given the
positive association between cell size and growth rate in constant-temperature en-
vironments, one might expect that higher temperatures would promote both faster
growth (within physiological limits) and larger cell volumes. Unfortunately, there is
remarkably little information on this matter in prokaryotes, although in their semi-
nal work, Schaechter et al.113 found that Salmonella cells grown at low temperature
are substantially larger than those growing at identical rates (with lower nutrients)
at higher temperatures. Their results suggest that temperature induces a different
cell-size response to growth rate than does nutrient availability – to maintain a spe-
cific growth rate at lower temperatures, individual cells seemingly have to be larger
(Figure 9.7B).

How generalizable is this sort of observation? Although there is a long history
of thought on the relationship between organism size and temperature, the focus
has mostly been on multicellular species. Here, the general idea is that organisms
living in cooler environments have larger body sizes (within and among species), os-
tensibly because reduced surface area:volume ratios mitigate heat loss. This pattern
has come to be known as Bergmann’s rule, in honor of the originator of the idea12.
Although its generality has come to be questioned for multicellular organisms109,
the expected pattern does appear to hold for microbial eukaryotes, albeit likely for
different reasons than proposed for homeothermic vertebrates. In every study where
the matter has been closely investigated, average cell volume declines with increasing
temperature, while the growth rate increases. Such observations have been drawn
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from ciliates, flagellates, amoeboid heterotrophs, and diverse phototrophs, with the
average response being an ∼ 25% decrease in cell volume accompanying a 10◦C in-
crease in temperature6,48,118. If nothing else, such observations demonstrate that the
positive association between cell size and growth rate found in different nutritional
environments is not generalizable to other environmental effects.

Again, whereas such a universal temperature response among diverse unicel-
lular species might suggest the need for a general adaptive explanation for such
behavior, the basis for such patterns remains unclear. Indeed, given the existence
of size-selective predation and potential size-associated competitive interactions and
physical-environmental effects, mortality rates are likely to be size-dependent, so it
is by no means clear that induction of large cell size is uniformly favorable in colder
natural environments.

Is the physiological response to temperature change, running in the opposite di-
rection to that induced by nutritional differences, an unavoidable by-product of the
molecular mechanisms that set times to division? Future work in this area should
look to the numerous experiments showing that when the translational capacity of ri-
bosomes is compromised by chemical manipulation in E. coli, the phenotypic scaling
between cell size and growth rate runs in opposite directions to the nutrient-based
pattern65,117,118. Perhaps the same underlying mechanism applies to temperature
shifts.

Scaling of Intracellular Features

It is well known that various organs, tissues, and other body parts scale with body
size as multicellular organisms grow132, a phenomenon known as developmental al-
lometry. Less clear is the extent to which internal cellular features (including tran-
script and protein numbers, organelle numbers and size, etc.) scale as cells grow
from birth to maturity. A general positive relationship between levels of cellular
components and cell volume can be expected, as the organelles and molecular con-
stituents of cells have functional roles whose total demands typically increase with
the volume of cell. However, the expected quantitative patterns of scaling are less
clear.

On the one hand, intracellular features might scale isometrically throughout
growth (thereby keeping the intracellular environment relatively constant). Such
scaling would be consistent with the exponential growth in cell volume noted above,
which implies the maintenance of constant growth capacity per unit cell volume
regardless of cell size. On the other hand, as cells grow and experience reductions
in the surface area : volume ratio, the effective availability of nutrients per unit
biomass might be reduced. If so, altered investments in the machinery associated
with nutrient uptake and intracellular transport may be required, much like the
responses of ribosome investment seen when cells are grown under different nutrient
conditions.

For the few eukaryotic cellular traits with a modicum of data, isometric scaling
with cell volume appears to be the norm. For example, in yeasts, mitochondrial
volume constitutes ∼ 1% of cell volume throughout life in S. cerevisiae107, ∼ 10%

in Candida albicans128, and ∼ 9% in Cryptococcus neoformans87. Isometric scaling
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is also true in HeLa cells, with ∼ 10% of the fractional volume of consisting of
mitochondria100. Throughout growth in Euglena gracilis, the plastid constitutes
∼ 16% and the mitochondrion ∼ 6% of the total cell volume98. Likewise, in the
green alga Chlorella fusca, the volumetric contributions of plastids, mitochondria,
and vacuoles remain nearly constant, at 40, 3, and 10% respectively5. Total vacuole
volume also scales nearly isometrically in S. cerevisiae, constituting ∼ 6% of cell
volume throughout the cell cycle25,26. On the other hand, the essentially linear
actin cables in yeast appear to scale with the length of the cell84.

Compelling evidence for active cell-volumetric control of organelle size derives
from observations on the eukaryotic nucleus. In both S. cerevisiae and S. pombe,
nuclear volume comprises a nearly constant ∼ 6 to 8% of cell volume throughout
cell growth51,64. Transplants of nuclei from small to large cells reveal that the
nucleus expands to the size expected given the host-cell volume. Such responses are
not affected by the amount DNA in the nucleus, as they are even observed when
DNA content is increased as much as 16-fold94. Similar responses have been seen
in vertebrate cell cultures75, and it appears that the nuclear-to-cytoplasmic volume
ratio is largely governed by a simple balance of osmotic pressures associated with the
numbers of protein molecules in the nucleus vs. the cytoplasm34. Notably, across a
wide range of prokaryotic species, the size of the nucleoid (the amorphous region of
the genome, without nuclear envelopes or histone-packaging of chromosomes) also
grows nearly isometrically with cell volume within the growth cycle52.

Although the molecular mechanisms underlying cytoplasmic-composition home-
ostasis throughout the cell cycle remain mostly unknown16,23,24,51, the emerging pic-
ture is that cells typically operate as bioreactors, with relatively constant internal
compositions, until rapid remodeling takes place at the time of division. Still, this
leaves open the question as to whether individual cellular features grow indepen-
dently through time at roughly the same rate, or are somehow mutually guided via
feedback associated with cell volume. These two alternative models make some-
what different predictions with respect to scaling relationships (Foundations 9.3).
Passive homeostasis might simply arise from global changes in transcription rates
in response to growth rate, thereby leading indirectly to coordinated assembly of
subcellular compartments without the need for elaborate system-specific regulatory
mechanisms.

It is also unclear how the ontogenetic patterns noted here relate to among-
species scaling patterns observed at the phylogenetic level (Chapter 8). Returning
to the questions relating to cell size and growth rate in the previous section, are
the prevailing statistical relationships seen between pairs of characters during de-
velopment recapitulated over evolutionary time with the divergence of phylogenetic
lineages, or can evolution promote shifts in cellular composition in arbitrary direc-
tions? An organism’s repertoire of developmental and phenotypic plasticities sets
the range of phenotypic combinations that can be achieved and tested by natu-
ral selection prior to genetic change, so in principle genetic alterations that simply
hardwire a plastic response into a constitutively expressed phenotype may provide a
readily accessible route to multivariate evolution. This very old idea7,144 essentially
suggests that natural selection will typically exploit the paths of least resistance by
genetically assimilating preexisting possibilities. Such a view is not very different
than the conventional vision of evolution as a process of descent with modification.



14 CHAPTER 9

If this is the case for intracellular architecture, then the observations noted
above suggest that isometric scaling of eukaryotic cell parts should also prevail at
the phylogenetic level. Although the topic is largely unexplored, the kinds of phylo-
genetic scalings outlined in Chapters 7 and 8 provide compelling material for future
investigation. Indeed, with its strong molecular basis, evolutionary cell biology pro-
vides a compelling platform for understanding the mechanistic links (or lack thereof)
between allometric scaling relationships at the ontogenetic (developmental), envi-
ronmental (physiological), and phylogenetic levels.

Phenotypic Variation in Cell Size and Division Time

Although the preceding discussion has focused largely on the average behavior of
cell-growth features, the stochasticity of events inherent in growth-related processes
generates nontrivial variation in cell traits49. Sources of variation for cell size and
growth rate include: 1) variation in birth size owing to imperfect partitioning at cell
division; 2) variation in numbers of ribosomes and of other critical molecules per
cell, partly associated with variation in initial partitioning, but also from subsequent
events such as transcription and translation; 3) inaccuracies in the growth-increment
target; and 4) extrinsic variation in the microenvironment.

Many attempts have been made to incorporate one or more of these factors into
models of steady-state distributions of cell size and division time65,70,102,115,127,136,137.
There is by no means uniformity in opinion on the mathematical forms of cell-feature
distributions, and the details will not be pursued here. However, it is worth noting
that predicted patterns are often closely related to formal distributions derived in
the early days of statistics for entirely different reasons. For example, the Yule155 dis-
tribution can be used to describe situations involving parallel (autonomous) growth
of cellular constituents, such that cell parts are duplicated during the cell-growth
process, with each duplication occurring independently with fixed probability per
unit time, and cell division occurring at the time of duplication of the final part. In
contrast, a Pearson Type III distribution describes a situation in which cell division
takes place only after the completion of a series of consecutive (interdependent)
steps, with each initiated step completed with a certain probability per unit time
following the exit from the preceding step66. Although these models do not strictly
incorporate variability in size at birth, they do have features that are conceptually
connected to the assumptions under the adder model, where a certain amount of
cellular biomass must accrue before the cell divides. They also generate skewed
distributions with long tails to the right, superficially similar to what is typically
seen with real data (Figure 9.8).

Results from single-cell monitoring demonstrate that the magnitude of standing
variation among genetically uniform cells is generally quite large. Observations from
well-mixed laboratory cultures of unicellular species commonly yield coefficients of
variation (CVs, equal to the standard deviation divided by the mean) in the range
of 0.1 to 0.5 for size at birth and maturity, incremental addition, and age at division
(Table 9.1). As all of the studies in Table 9.1 involve single genotypes, the observed
variance is due entirely to vagaries in the internal and external cellular environment.
Yet, CVs of this magnitude are substantially greater than those observed for mor-
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phometric traits in genetically variable samples of multicellular organisms82, which
are usually on the order of 0.05 to 0.10.

Owing to bursty transcription and translation21,108 (Chapter 21), high levels of
cell-to-cell variation extend to the molecular level, and this likely feeds back in ways
that contribute to variation in cell life-history traits. For a diversity of prokaryotes
and eukaryotes, the CV for the number of molecules of particular proteins scales as
z−0.2, where z is the mean number of proteins/cell139. As the average number of
protein molecules per genetic locus per cell ranges from 10 to 105 from the smallest to
the largest cell types (Figure 7.4), this implies CVs ' 0.6 to 0.1, with some evidence
suggesting that 0.1 may be close to the asymptotic lower limit for highly expressed
proteins67. The CV for protein numbers also increases with decreasing cell-division
rates by a factor of ∼ 3 over the whole range of growth rates67.

Table 9.1. Coefficients of variation (CV, standard deviation divided by the mean) for
growth-related features of cells.

Species Trait CV Reference

Bacteria:
Aerobacter cloacae Generation time 0.18 103
Azotobacter agilis Elongation rate 0.10 54

Generation time 0.22 54
Bacillus mycoides Generation time 0.48 102
Bacillus subtilis Generation time 0.54 102
Bacterium aerogenes Generation time 0.30 102
Escherichia coli Elongation rate 0.08 127

Division length 0.14 127
0.12 54

Birth length 0.16 127
Generation time 0.21 127

0.28 54
0.30 69

Added length 0.24 127
Proteus vulgaris Generation time 0.32 102
Pseudomonas aeruginosa Generation time 0.14 103
Serratia marcescens Generation time 0.17 103

Generation time 0.14 135
Streptococcus faecalis Generation time 0.27 102

Eukaryotes:
Saccharomyces cerevisiae Length of G1 phase 0.46 35
Schizosaccharomyces pombe Division length 0.07 135
Tetrahymena pyriformis Generation time 0.12 115

Division size 0.12 115

Stochastic partitioning of cell contents at division. In most studies of varia-
tion in multicellular organisms, the relative contributions of different causal sources
of variation are unknown82. However, for cellular traits, a number of insights can be
gained from first principles. We start with the ways in which the basic features of
molecular segregation during cell division generates variation among progeny. Such
stochastic inheritance can have an equally if not greater overall effect than intrinsic
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transcriptional noise (Chapter 21) for the simple reason that upstream variation in
molecular abundance can further generate downstream gene-expression noise, and
vice versa. Such an outcome is a simple consequence of the structure of biology
– numerous cellular products are responsible in one or more ways for their own
production69.

For the simplest case of a cell containing n molecules at the time of division,
with each being independently and randomly distributed to the two daughter cells
with probability 1/2, the average number of molecules inherited per offspring cell is
no = n/2, but from the binomial sampling formula the variance (i.e., the square of
the standard deviation) is σ2

n0
= n(1/2)(1/2) = n/4. The coefficient of variation is then

CV(no) = σno/no = 1/
√
n, showing that relative to the mean, the standard deviation

is inversely related to the square root of the number of molecules being partitioned.
This simple principle predicts elevated CVs in small cells containing smaller num-
bers of molecules. It may also, in part, explain the reduction in CVs in traits in
multicellular species, which might average out the noise from their constituent cells.

Additional sources of stochastic inheritance during cell division can inflate the
level of variation further. The argument outlined in the previous paragraph assumes
the ideal situation in which each daughter cell draws from an identical cytoplasmic
pool. If, however, the cell volumes of daughter cells are unequal (owing to the
imperfect positioning of the division septum), the coefficient of variation for offspring
cells increases to

CV(no) =

(
1− [CV(V )]2

n
+
[
[CV(V )]2 · {[CV(n)]2 + 1}

])0.5

, (9.9)

where n is the average number of molecules per adult cell, and CV(V ) and CV(n) are,
respectively, the coefficients of variation for offspring (sister-cell) volume and for the
number of molecules per parental cell57. Empirical estimates of CV(V ) ' 0.05 to 0.12
in E. coli133, Bacillus subtilis93, Caulobacter crescentus133, and Schizosaccharomyces
pombe62,135. CV(n) is typically of similar magnitude to that for CV(V ) and relatively
similar among species, ' 0.10 in E. coli54,114, Azotobacter agilis54, and Salmonella
typhimurium114, 0.16 in the dinoflagellate Gonyaulax polyedra56, and 0.07 in the
yeast S. pombe135.

Unless n < 100, with CV(V ) and CV(n) both < 0.1, it can be seen from Equation
9.9 that random partitioning of cell volume does not greatly elevate the level of
variation in the inherited numbers of molecules beyond the binomial expectation,
1/
√
n. On the other hand, if CV(V ) > 0.1, the inflation can be greater than tenfold

with small n (Figure 9.9).
Eukaryotic cells have an additional layer of stochasticity in that some molecules

are segregated into vesicles or organelles prior to cell division, which are then ran-
domly partitioned among offspring cells. Huh and Paulsson57 provide a general
expression for the variation rendered under this model. If it assumed that the num-
bers of vesicles per cell are independently distributed, and that the molecules are
randomly distributed among vesicles,

CV′(no) '
(

1

n
+
{1 + [CV(no)]

2}{1 + [CV(v)]2}
v

)0.5

, (9.10)

where v and CV(v) are the mean and coefficient of variation of the number of vesicles
per cell. From Equation 9.9, we know that CV(no) > 1/

√
n and possibly as large
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as 10. Studies of mitochondrial inheritance in the fission yeast S. pombe61 and of
endosome inheritance in mammalian cell cultures11 suggest that the partitioning of
such organelles is only slightly less variable than the binomial expectation, which
would imply CV(v) ' 1/

√
v. In addition, we expect the mean number of vesicles (v)

to be much lower than the mean number of molecules (n) per cell.

Thus, it is clear that the stochastic partitioning of vesicles (described in the
second fraction in Equation 9.10) can be a dominant source of intracellular variation
unless there is some regulatory mechanism for controlling cargo partitioning among
vesicles and vesicle partitioning among offspring cells. Moreover, variable organelle
partitioning is likely to generate more phenotypic variation among cells than might
be expected based just on organelle number. For example, because mitochondria
are the sites of ATP production in eukaryotic cells, and ATP drives transcription
and other cellular processes, mitochondrial partitioning during inheritance can have
nonadditive effects on offspring cell performance30,63.

Finally, it is worth noting that some cellular features can lead to a less variable
pattern of inheritance of intracellular contents than expected by chance. For exam-
ple, in E. coli (and many other bacteria) the genome is compacted into a centrally
located nucleoid. The resultant mesh-like features serve as a barrier to the move-
ment of ribosomes, which then become more concentrated towards cellular poles for
purely physical reasons22. This may lead to a more even distribution of ribosome
numbers in progeny cells than expected if each ribosome were drawn independently.

Phenotypic Variation and Adaptation

As explained in prior chapters, not all of evolutionary change is a product of natural
selection, and as adaptive as they might seem superficially, certain kinds of changes
can only be efficiently promoted by selection under a narrow range of population-
genetic conditions. Nonetheless, either unaware or unconvinced of such issues, nu-
merous investigators have asserted that variation-inducing features, like those noted
above, are not simple consequences of biophysical constraints, but have been ad-
vanced by natural selection as strategies for survival in variable environments. In
reality, however, there is a remarkable void of evidence for phenotypic variance (aside
from regulated phenotypic plasticity) serving an adaptive purpose, and good reasons
to think otherwise.

The following provides an overview of the general consequences of phenotypic
variation for the process of natural selection. First, we consider how nonheritable
environmental noise, such as that induced by cellular stochasticity, reduces the re-
sponse to selection on a trait by obscuring the genetic differences among members
of a population. Second, we demonstrate how, even in the absence of genetic vari-
ation, selection can yield a transient (and in some cases persistent) change in the
phenotypic properties of a cell lineage, provided the environmental deviations among
individuals are at least partially heritable, as will often be the case for growth-related
traits. Finally, we will return to the issue of whether phenotypic variation (within
genotypes) is maintained by natural selection as a mechanism for coping with a
variable environment.
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Environmental variation and the efficiency of selection. One of the bedrock
results of evolutionary theory concerns the nature of the underlying determinants
of the resemblance between relatives. Understanding this issue is critical to under-
standing processes of adaptation for a very simple reason. Although the process of
natural selection will always proceed provided there is fitness-associated phenotypic
variation is present, only the fraction of variation with a heritable genetic basis
is relevant to permanent evolutionary change. As will be shown in the following
section, heritable environmental effects can lead to some response to directional se-
lection, but any such response is transient, quickly decaying away once the prevailing
selection pressure is terminated.

The central question here is the degree to which offspring phenotypes resemble
those of their parents. For asexually reproducing cells, this is simply defined by the
fraction of the phenotypic variation that is genetic in basis, a quantity known as
the broad-sense heritability (or H2) (Foundations 9.4). This key measure is readily
estimated by taking a random sample of a population and regressing offspring on
parental phenotypes82. The best-fit slope, which is generally restricted to the range
of 0.0 to 1.0, is equivalent to H2 (Figure 9.10). Because total phenotypic variance
is the sum of contributions from genetic and environmental effects, the higher the
background noise from environmental causes, the lower the heritability of the trait.

The heritability of a trait is, in turn, directly related to the response to selection.
Imagine a parental population with phenotypic mean P p prior to selection, with di-

rectional selection then moving this to P
′
p, yielding a change of S = P

′
p − P p. This

difference S in mean phenotypes prior to reproduction is called the selection differ-
ential. As an example, Figure 9.10 shows a situation in which an initial phenotype
distribution (black bell-shaped curve) is shifted to the right by viability selection
(red curve). The diagonal line denotes the parent-offspring regression. If there were
perfect transmission of phenotypes across generations, i.e., if H2 = 1, the mean
offspring phenotype would be identical to that of the selected parent generation,
and the response to selection (R) would equal the selection differential. However,
if there is environmental variance for the trait, the slope of the parent-offspring re-
gression will be < 1, and transmission will be less than perfect because the parental
phenotypes deviate from their underlying genotypic values. This is often referred
to regression towards mediocrity. If there is no genetic variation, there will be no
permanent selection response at all.

Summing up, for a population of asexually reproducing cells, the response to
selection is simply

R = H2S, (9.11)

showing that H2 is equivalent to the fraction of the selection differential that is
transmitted across generations. In a simple fashion, this result illustrates that the
ability of natural selection to promote genetic change declines with increasing envi-
ronmental variation.

Inheritance of environmental effects. Although a permanent response to di-
rectional selection requires the promotion of underlying genetic change, a transient
response can sometimes be achieved in the absence of genetic variation. Because
selection operates regardless of the source of phenotypic variation, if variation at the
phenotypic level owing to intrinsic and/or extrinsic environmental effects is partly
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heritable across generations, the mean phenotype will still move in the direction of
selection, even in the absence of genetic variation (Foundations 9.5). However, un-
like the situation with genetic change, such a shift will not be permanent. Rather,
under persistent directional selection, the population mean phenotype is expected
to reach an alternative steady state reflecting a balance between the directional
force of selection operating on phenotypes and the erosion of progress each gener-
ation resulting from the dilution of inherited environmental effects. If selection is
relaxed, all progress due to the inheritance of acquired environmental deviations will
be quickly eroded away.

This sort of transient response to selection applies to any cellular feature that
is partly inherited across generations. For example, any trait that is a function of
the number of molecules within a cell (such as a metabolic rate) will naturally be
subject to inheritance across cellular generations owing to the fact that the contents
of progeny cells are derived immediately from parental-cell constituents, with the
molecular composition subsequently undergoing turnover associated with continued
production and degradation. Given that offspring in unicellular species inherit half
of their parent-cell constituents, these kinds of effects are expected to be much more
significant than in multicellular species. Indeed, the complete dissipation of maternal
environmental effects can require up to ten generations in bacterial populations140.

Such effects are of likely relevance to laboratory experiments that either inten-
tionally or indirectly select for extreme phenotypes. For example, as noted above
for the adder growth model, large adult cells yield large progeny cells (although not
as large, on average, as themselves), which more rapidly reach the point of cell divi-
sion. Smaller cells take a longer time to reach the requisite cell-volume increase of ∆,

and hence lag in terms of their contribution to the growing population. Although
the descendants of large, rapidly dividing cells will gradually move back towards
the expected offspring size of ∆, with imperfect cell division, extreme cell sizes will
continuously be produced anew, recreating the biasing process. This verbal model
needs to be worked out in a more formal manner, but it provides a potentially simple
and general explanation for the consistent observation of cells becoming larger in
environments with higher nutritional status, even in the absence of genetic variation,
as noted above.

A selection experiment by Yoshida et al.152 may be relevant here. Using a cell
sorter, they selected for smaller cell size in cultures of E. coli for 22 consecutive days
by allowing only the smallest 1% of reproducing cells to propagate to the next gener-
ation. Overall, an ∼ 20% decline of mean cell size was observed, with the variance in
size decreasing only slightly (implying that sufficient opportunity for selection, but
not necessarily genetic variance, remained throughout the experiment). Sequenc-
ing the entire genome of one selected population revealed only a single nucleotide
change, the relevance of which remained unclear.

Although the logic just outlined provides a simple argument for why one expects
an elevated resemblance between parents and offspring associated with transiently
heritable environmental effects, there has been some suggestion of an even higher
correlation between collateral relatives (i.e., relatives that are not direct descen-
dants) within genetically uniform cultures of cells. For example, Sandler et al.111

found that the correlation between cell-division times in parent and offspring lym-
phoblast cells is just 0.04, whereas that between sister cells is 0.71, and that between
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first-cousins is 0.58. They call this elevated correlation among cousins relative to
that between mother and offspring cells the “cousin-mother inequality.” Cultures
of mammalian cancer and embryonic stem cells exhibit similar behavior47,72.

These kinds of observations have also been made with cell-lineage studies of
several bacterial species140. For example, in Aerobacter cloacae, the correlation in
cell-division time is -0.15 for mother-daughter cells, but 0.44 for sibs, and 0.19 for
first cousins. Likewise, for Serratia marcescens, these correlations are, respectively,
-0.20, 0.58, and 0.38. The reduced correlation between first cousins relative to
that between sibs is consistent with a progressive dilution of shared effects, and as
expected, an even further decline is observed for second cousins140.

Superficially, these results suggest a mechanism of inheritance that is lost for
one generation, and then regained in the next, with subsequent erosion of the cor-
relation occurring among the parallel descendants of maternal lineages. This led to
the claim that such reappearance of heritability cannot be explained by stochastic
inheritance, and requires an underlying deterministic mechanism97,111. However, al-
though a model can be set up in which an internal oscillator (putatively a circadian
clock) operates with a periodicity such that first cousins are born at approximately
the same time111, the following simple argument indicates that a deterministic mech-
anism need not be invoked.

Imagine that parent cells have their division times determined by physiological
effects experienced early in life, but that en route to division, additional resources
are gained (or lost) that will influence the division times of their offspring, e.g., a
burst of transcriptional/translational activity late in the maternal cell cycle. Upon
fission, these resources will then be approximately equally allocated to the two
progeny cells, causing a sib correlation in the population, but having little effect
on the maternal-offspring correlation. Although sibs share maternal effects, only a
fraction of these will be transmitted to the next generation (leading to a smaller
first-cousin correlation, and a still smaller one for second cousins)124.

The adaptive value of phenotypic variation. Finally, we turn to the common
argument that within-genotype phenotypic variation is molded by natural selection
to provide a strategy for dealing with environmental variation1,39,45,60,69,73,76,131,160.
As already noted, cellular features exhibit substantial, unavoidable variation owing
simply to the intrinsic stochasticities of cellular processes. Here, we note several
compelling theoretical reasons for why the further promotion of variation by selec-
tion should be the exception rather than the norm. The focus here is not on major
discrete phenotypic changes induced by environmental triggers (such as spore for-
mation, or transition to motility), which in many cases almost certainly represent
adaptive survival mechanisms80,150. Rather, the question is whether the continuous
range of variation typically associated with quantitative traits such as growth rate,
cell size, and metabolic rates constitutes an adaptive bet-hedging strategy.

One of the most substantive reasons for questioning assertions about adaptive
maintenance of phenotypic variation relates to the fact that selection is agnostic with
respect to the underlying genetic/environmental determinants of variance. Follow-
ing the logic outlined above, if selection favors an extreme phenotype, when indi-
viduals at the extreme are largely there as a consequence of nongenetic effects, the
ability of selection to promote individuals with a genetic predisposition to extreme
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trait values will be compromised. This is because individuals with particularly ex-
treme genetic values will compete for promotion by natural selection with those with
more average genetic values but higher variance in expression19. Thus, selection for
variance-producing genotypes is difficult when levels of stochastic phenotypic vari-
ance are already high. The likelihood of success is even lower if individuals with
extreme genetic values have narrower conditional phenotype distributions around
the expectation, as these would then be more visible to natural selection.

Of related importance is the fact that selection on phenotypic variation is a
second-order effect, as individual genotypes are not promoted on the basis of their
own expected genotypic values but via the distribution of their descendants’ pheno-
types. Unless there is continuing fluctuating selection for individuals at the opposite
phenotypic extremes at a sufficiently high rate, the link between genotypic fitness
and the ability to differentially generate variation will be weak. This will especially
be the case for sexually reproducing species where recombination will progressively
remove the disequilibrium between parental genotypic values and descendant phe-
notype distributions.

Although these arguments do not entirely rule out the possibility of direct se-
lection for the production of broad phenotype distributions, they do lay out the
substantial logical challenges confronting those who wish to invoke the existence of
phenotypic variation as a direct product of adaptation. It is one thing to hypothe-
size on the optimality of a complex feature, but quite another to demonstrate that
natural selection is actually capable of advancing such change.

As a more explicit example of interpretative difficulties here, consider a study
in which single-cell monitoring methods were used to demonstrate that the rate
of exponential growth of a culture of E. coli with the same average cell-division
time is elevated if there is variance around the mean. The authors55 argued that
these results demonstrate a “fundamental benefit of noise for population growth.”
However, as we know that the rate of population expansion (r) is inversely related to
cell doubling time (tD) (Equation 9.2), this result was readily predictable in advance
– for any absolute change in tD, the increment in r with decreased tD is greater than
the decrease incurred with increased tD. The behavior results simply because in a
growing population, r is bounded above 0.0 and increases at an accelerating rate as
tD becomes small. No elaborate experiment was necessary to show this.

On the other hand, the outcome would have been completely different if the
population was declining rather than increasing. In this case, a sublineage of cells
with an absolute deviation in division time below the average will experience a
greater change in the rate of decline than will a sublineage with a positive deviation
of the same absolute amount. Here, variation in the underlying trait enhances the
rate of decline of the sublineage. This is not a trivial example for the simple reason
that, on average, populations ultimately must go through equal periods of growth
and decline, else the population will either go extinct or fill the universe.

More generally, the relationship between the level of variation and the expansion
of growth of a cell lineage can be seen to be a simple consequence of the form of
the fitness function (Figure 9.11). If the relationship between phenotype and fitness
is concave upward, the average fitness of a variable population will be greater than
that of a population having the same mean phenotype but no variance. In contrast,
if the fitness-phenotype relationship is concave downward, the opposite occurs – in
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this case, the boost in fitness from the upwardly deviating phenotypes is smaller
than the loss of fitness in downwardly deviating phenotypes. An extreme case can
be seen for the situation in which the trait is under stabilizing selection with the
mean phenotype coinciding with the optimum – any deviation from the optimum
will result in a decline in fitness. Only for the special situation in which the fitness
function is perfectly linear is the influence of variation on fitness effectively neutral,
owing to the fact that equal upward and downward phenotypic deviations have
equivalent effects on fitness.

Finally, even these arguments are not ironclad, as they consider only the sit-
uation in which the phenotype distribution is symmetrically distributed about the
mean. With asymmetric phenotype distributions, many alternative outcomes are
possible, as the bulk of the phenotype distribution may reside in regions where the
fitness function is either increasing or declining. The salient issue is that there is
no general advantage to phenotypic variation. Although transient situations may
arise in which variation is useful, the same may be said for periods in which it is
detrimental.

The general conclusion then is that intrinsic variation in cellular processes re-
sults in high levels of phenotypic variation among individual cells, much higher than
observed among individuals in multicellular species. As seductive as it is to attach
an adaptive meaning to all things biological, the idea that phenotypic variance is
generally promoted by selective processes appears to be a substantial overstatement
if not positively misleading. The very structure of biology makes the avoidance of
phenotypic variation impossible.

Summary

• Observations from a diversity of organisms reveal a number of patterns involv-
ing cellular responses to growth environments that are general enough to be
labeled “growth laws” by microbial physiologists. One universal relationship is
the increase in relative investment in ribosomes with increasing cell-division rate,
reflecting the conflict of the high energetic cost of ribosomes and their necessity
for building cellular material.

• The response of cell-division rate to the concentration of a limiting nutrient can
generally be described by a hyperbolic function similar to the Michaelis-Menten
form for enzyme kinetics.

• The growth of cell volume within a cellular life cycle is typically exponential
in form, as expected if reaction rates per cytoplasmic volume are nearly size-
independent. Consistent with this view, the ontogenetic response of cell compo-
sition to cell volume during individual growth appears generally to be isometric,
such that the relative proportions of cell contents remain constant.

• A wide array of prokaryotic and eukaryotic cells determine their division times
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by monitoring the total change in size, rather than by targeting a specific size or
time, dividing only after a threshold amount of material has been added. Such
behavior naturally leads to cell-size homeostasis.

• The models for such growth patterns serve as first-order approximations and are
phenomenological in nature, as the underlying mechanisms driving them remain
uncertain and are variable among species. Nonetheless, evidence suggests that
the determination of growth-size thresholds often involve the products of just two
or three genes, implying relatively simple evolutionary paths for altering cell size
and division time.

• In all species that have been studied closely, cell size increases with the nutri-
ent status of the environment, but decreases with increasing temperature. It
remains unclear whether such shifts are adaptive in any way. They may simply
be inevitable by-products of the underlying molecular mechanisms by which cells
commit to division.

• Numerous sources of stochastic variation, ranging from sporadic transcription
/ translation to random partitioning of cellular contents at division, result in
considerable phenotypic variation among genetically identical cells, even in well
mixed environments. The magnitude of such variation, which obscures the visibil-
ity of genetic differences to natural selection, is substantially greater in unicellular
than in multicellular organisms.

• Owing to the fact that binary fission results in substantial sharing of the contents
of parent, offspring, and sib cells, unicellular lineages are subject to significant
inheritance of nongenetic effects, which can lead to transient shifts in phenotypic
values in the absence of genetic change.

• Although there has been considerable speculation that the tendency to produce
such high levels of phenotypic variation has been advanced by natural selection
as means for coping with variable environments, there is little empirical or theo-
retical support for this contention.
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Foundations 9.1. The scaling of ribosome number and cell growth rate.
Although cells in nature commonly experience fluctuations in resource availability on
time scales shorter than the cell-division time, it is instructive to consider the steady-
state situation in a constant environment, as when cells are grown in a continuous-
flow chemostat (Chapter 8). Under such conditions, the production rate of every
biomolecule (per existing molecule) in the cell must be identical to the rate of overall
cell growth, ensuring a steady-state cellular composition.

The rate of translation per cell, and hence the cellular growth rate, ultimately de-
pends on the number of ribosomes and the number of mRNA transcripts that they en-
counter. Although translation also involves the use of accessory proteins (e.g., aminoa-
cyl tRNA synthetases, elongation factor, and many others8) and transfer RNAs, the
abundance of such factors under steady-state growth will be in constant proportion
to that of the ribosomes, leaving the latter as a quantifiable indicator of the rate of
translation, and hence cell growth. This argument assumes that cells are conservative
with respect to the production of energetically expensive ribosomes, i.e., produce no
more than needed to service the current mRNA pool. Here, we follow a derivation
presented by Scott et al.117 to quantify this connection.

Letting M denote the total protein mass associated with a cell, and MR denote
the total protein mass associated with ribosomes and their affiliated proteins, i.e.,
“extended ribosomes,” then fR = MR/M is the fractional allocation of proteins to
translation. Letting mR denote the protein mass of a single extended ribosome, which
will hereafter be simply abbreviated to ribosome, the number of ribosomes per cell is
NR = MR/mR = fRM/mR.

Assuming that all ribosomes are engaged in translation, letting kT denote the
rate of translation (i.e., the rate at which amino acids are added to elongating protein
chains, here assumed to be constant), and letting mAA be the average mass of an
amino acid, the rate of increase in cellular protein mass is

dM

dt
= mAA · kT ·NR =

(
mAA · kT · fR

mR

)
·M. (9.1.1a)

Because the mass of all components of the cell must increase at the same rate under
steady-state conditions, and cell division must proceed at the same rate as growth in
size, Equation 9.1.1a can also be written as

dM

dt
= rM, (9.1.1b)

with r denoting the per-capita rate of cell division. The solution of this expression is

M(t) = M(0) · ert, (9.1.1c)

where
r = mAA · kT · fR/mR, (9.1.2a)

which can be condensed to a simpler form

r = KR · fR, (9.1.2b)

with KR = mAAkT /mR being a measure of the translational capacity of the system
(the rate of protein mass produced per unit mass of extended ribosomes).

Although the preceding derivation assumes that all ribosomes are actively en-
gaged in translation, if a subfraction fR,0 is inactive (independent of growth condi-
tions), then

r = KR · (fR − fR,0), (9.1.2c)
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which rearranges to

fR = fR,0 +

(
r

KR

)
. (9.1.3)

The central assumptions in the preceding derivations are that the translation
rate of engaged ribosomes (kT ) and the fraction of unoccupied ribosomes (fR,0) are
invariant with respect to growth rate. Under such conditions and subject to the
constraint that fR ≤ 1, Equation 9.1.3 predicts a linear relationship between the
fraction of protein invested in extended ribosomes and the rate of cell division, with
the intercept being equivalent to the fraction of total cellular protein associated with
unengaged ribosomes, and the slope (1/KR) measuring the inverse of the translational
capacity. If fR,0 and KR are functions of r, the scaling relationship in Equation 9.1.3
would be altered.

Foundations 9.2. Nutrient limitation and cell growth. In Foundations 9.1, an
expression was derived for the rate of cellular growth in terms of ribosome processing.
An alternative expression for the growth rate can be couched in terms of the rate of
conversion of a limiting nutrient into biomass, again represented by the total mass
of protein M . Under steady-state conditions, both approaches must yield equivalent
answers for the rate of cell growth, as the rate of amino-acid uptake/biosynthesis must
equal the rate at which amino acids are incorporated into proteins at steady state.

We first introduce this second approach, and then unify the two into a joint
expression. Again following Scott et al.117, we let

dM

dt
= c · kE ·ME , (9.2.1a)

wherec is a constant representing the conversion of the nutrient into M , and ME is
the summed mass of the proteins involved in nutrient acquisition and conversion into
amino acids,

kE = kE,max

(
S

KS + S

)
, (9.2.1b)

is the rate of nutrient acquisition per mass of enzyme protein, following the Michaelis-
Menten form, which depends on the nutrient concentration (S), and the half-saturation
constant (KS).

We now assume that the total protein in a cell (M) can be partitioned into three
sectors (Figure 9.12): a fraction taken to be quantitatively (although not necessarily
qualitatively) invariant with respect to cell physiology; a fraction consisting entirely of
ribosomal proteins and other proteins associated with translation (extended ribosomes,
as in Foundations 9.1); and a fraction associated with metabolic features that respond
to nutritional changes. Letting these three fractions be fQ, fR, and fP respectively,
the system is constrained to obey

1 = fQ + fR + fP . (9.2.2)

Because fQ is taken to be a constant, this means that increased investment in nutrient
acquisition (fP ) necessitates a parallel reduction in investment in protein production
(fR), as the two must sum to 1− fQ.

Further letting fE denote the fraction of protein mass in sector P devoted to
uptake of the limiting nutrient, i.e., fE = ME/MP , and recalling from Foundations
9.1 that fP = MP /M , Equation 9.2.1a expands to

dM

dt
= (c · kE · fE · fP ) ·M. (9.2.3)
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As in Foundations 9.1, the product within the parentheses is equivalent to the rate of
exponential growth, which can be further abbreviated to

r = KN · fP , (9.2.4)

where KN = c · kE · fE can be viewed as the nutritional capacity of the system.

We next wish to generate a more general growth-rate expression taking into
joint consideration the underlying details about both translation (Foundations 9.1)
and nutrient uptake. The key points are that under balanced growth: 1) the rate of
nutrient conversion into biomass must be equivalent to the rate of protein production
by ribosomes; and 2) the flexible fraction of the proteome must be apportioned into
the fractions associated with translation (fR) and nutrient provisioning (fP ).

As noted above, given that fR+fP = 1−fQ, there is an intrinsic tradeoff between
the two processes. The maximum possible fractional allocation to ribosomes (or to
the remaining pool) is fR,max = (1− fQ), or in other words,

fR = fR,max − fP . (9.2.5)

Recalling Equation 9.1.2c and substituting for fR from the preceding expression,

r = KR · (fR,max − fR,0 − fP ), (9.2.6)

where, as in Foundations 9.1, KR is a measure of translational capacity, and fR,0 is
the fraction of investment in inactive ribosomes. Further substitution for fP from
Equation 9.2.4 and some rearrangement leads to the overall solution

r = KR · (fR,max − fR,0) ·
(

KN

KR +KN

)
, (9.2.7)

This expression provides a mechanistic link between nutrient uptake and conver-
sion to protein biomass by ribosomes. In effect, it describes the situation in which the
allocation to R and P proteins, fR and fP , is mutually adjusted such that the rate of
intake of critical nutrients is matched by the rate of conversion into protein, subject
to the constraint that these must sum to 1− fQ. The fraction in large parentheses on
the right is a function of the translation and nutritional capacities of the system, with
the cell growth rate r → 0 as KN → 0, and r asymptotically approaching a maximum
value of KR · (fR,max− fR,0) as KN →∞. Because the fraction on the right equals 0.5
when KR = KN , the ribosomal capacity can be viewed as the half-saturation constant
for nutrient capacity. Thus, despite the added complexities, the overall expression for
r retains the form of a Monod growth equation.

This kind of partitioning model can be taken in a number of other interesting
directions. For example, it has long been known that cells under chronically high
nutrient levels often switch to seemingly inefficient modes of energy production, e.g.,
engagement in fermentation processes, which leave incompletely oxidized products such
as acetate or lactate, as opposed to the citric acid cycle, which oxidizes glucose all the
way down to CO2. Such metabolic overflow, or energy spillage, at high resource levels
can be explained by the fact that the machinery underlying fermentation processes
involves many fewer enzymes than that required for the citric acid cycle9,88. The
hypothesis here is that when the external carbon supply is high, cells can increase
the investment in the protein machinery necessary for biosynthesis by reducing the
investment in the enzymes necessary for input into such pathways. In contrast, when
the nutrient supply is low, investing more heavily in carbon metabolism allows cells
to maximally direct flux towards biosynthesis.

Bertaux et al.13 and Serbanescu et al.118 have extended the preceding model to
incorporate additional sector partitioning, e.g., cell division. These extensions allow
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for analysis of the size-growth rate relationship discussed in the text. There is room
for caution in overinterpreting the good fits of models like these, as a large number
of parameters are employed, not all of which are based on extrinsic estimates. The
value of the approach resides in helping to highlight the potential importance of broad
classes of underlying mechanisms that can be followed up by further empirical study.
Extensive details on the underlying proteomic responses of E. coli cells to changing
nutritional conditions are provided in synthetic reviews10,91.

Foundations 9.3. Scaling models for the development of cellular features.
Given what little we know about the mechanisms driving the quantitative relationships
between cells and their parts during cell growth, consideration of alternative models
may be informative, particularly if they predict different patterns of scaling.

Here, following Equation 9.7, we evaluate two fairly general models, in both cases
assuming exponential growth of the cell at rate r in terms of total volume, i.e., Vt =
V0e

rt. First, consider the situation in which a cellular feature grows exponentially and
autonomously (i.e., independent of cell volume, V ) at rate β, such that the expected
phenotypic value at time t is

zt = z0e
βt, (9.3.1)

where z0 is the phenotypic value at cell birth. Log transforming Equations 9.7 and
9.3.1, solving the first expression for t, and substituting into the latter, we obtain

log(zt) =

(
β

r

)
log(Vt) + c, (9.3.2a)

where

c = log(z0)−
(
β

r

)
log(V0), (9.3.2b)

is the intercept of a log-log plot of zt vs. Vt throughout developmental progression.
Noting that c is a constant determined by the size of the trait and cell volume at
birth (as well as the growth parameters β and r), this model predicts an allometric
(power law; Chapter 8) relationship, with the slope providing an estimate of the ratio
of growth rates (β/r). If the slope is equal to 1.0, then β must equal r, implying
isometric growth.

Now consider the situation in which growth of the trait is directly linked to the
growth in cell volume via some sort of regulatory mechanism53, such that

dz

dt
= β · Vt = β · V0e

rt, (9.3.3)

the solution of which is

zt =

(
β

r

)
Vt + c, (9.3.4a)

with

c = z0 −
(
β

r

)
V0. (9.3.4b)

Note that the key scaling parameter is again the ratio of growth rates, β/r. However,
in contrast to the volume-independent model, where there is linear scaling between
the log-transformed values of zt and Vt, when trait growth is coupled directly to cell
volume, the scaling is linear on the original scale of measurement. If β ' r, which
the data in the text suggest for volumetric traits, these two models will be difficult to
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distinguish based on growth-trajectory data alone. In both cases, the relationship will
be essentially linear on the original scale of measurement.

Foundations 9.4. Parent-offspring resemblance and the response to selec-
tion. The measure of a particular trait in a specific individual, P , can be viewed as
the sum of its expected value given its genotypic composition, G, and a deviation from
that expectation, E, owing to both internal effects associated with stochastic molec-
ular behavior and external effects associated with physical, chemical, and biological
aspects of the environment,

P = G+ E. (9.4.1)

The genotypic value G can be thought of as the average phenotypic measure expected
if a large number of individuals of the same genotype were monitored in an identical
environmental setting. The environmental effect E summarizes the net positive or
negative deviations around G, and has a mean (over all individuals) equal to zero
and variance σ2

E among individuals82. Provided there is no genotype-environment
covariance (i.e., environmental deviations are independent of the genetic background),
the total phenotypic variance in the population is then the sum of the genetic and
environmental variance components,

σ2
P = σ2

G + σ2
E . (9.4.2)

These variance components relate directly to the resemblance between relatives.
If the offspring of measured parents are allowed to develop to the same stage as the
parents and then measured, one can produce a parent-offspring regression, which is
equivalent to the straight line that best describes the overall relationship (Figure 9.10).
The slope of a best fit line is known to be equal to the ratio of the covariance between
x and y variables (denoted as σ(x, y), with the two variables here being offspring and
parent phenotypes) and the variance of the x variable (denoted as σ2(x), and here
applying to parental phenotypes). (For those unfamiliar with statistics, a variance is
the average squared deviation of measures from the mean, whereas a covariance is the
average cross-product of x and y deviations from their respective means). Letting o
and p denote offspring and parents, and assuming asexual reproduction, the covariance
between offspring and parent pairs expands to

σ(Po, Pp) = σ[(Go + Eo), (Gp + Ep)]. (9.4.3a)

Although there are four potential cross-product terms in the covariance, assuming
that the environmental deviations in different generations are uncorrelated (i.e., not
inherited, an assumption relaxed in Foundations 9.5), there can only be covariance
between the genetic values, so

σ(Po, Pp) = σ(Go, Gp), (9.4.3b)

and because parents and offspring have identical genetic values in an asexual popula-
tion, the genetic covariance is the same as the genetic variance,

σ(Po, Pp) = σ2
G. (9.4.3c)

This follows because the covariance of a measure with itself is equal to the variance of
the measure. The expected slope of the parent-offspring regression is then the ratio of
Equations 9.4.3c and 9.4.2,

H2 =
σ2
G

σ2
G + σ2

E

. (9.4.4)
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This quantity, which is usually referred to as the broad-sense heritability, is simply
the fraction of the total phenotypic variance attributable to genetic causes. Further
aspects concerning the phenotypic covariances among clonal relatives can be found in
Jun et al.65. Slight modifications are required under sexual reproduction, as parents
only transmit half their genetic value to their progeny82.

Foundations 9.5. Transient response to selection without genetic change.
Under the adder model for growth, ∆ is equivalent to the expected increase in cell
volume between cell divisions, and the expected size at birth is also ∆. This, however,
is only strictly true in the absence of selection on cell size. Imagine a clonal population
of cells with some variation in the realized value of ∆ experienced by individual cells,
owing to the vagaries in intracellular and external environments, and to the fact that
cells do not divide with absolute symmetry.

With variation around the mean ∆, the size of an adult cell at the time of division
can be expressed as

Va = V0 + ∆ + e∆, (9.5.1a)

where V0 is the size at birth, ∆ is the expected growth in size, and e∆ is the deviation
of the actual growth increment from ∆ owing to background variation, assumed to
have a mean value of zero and some variance σ2

∆. In the absence of selection, the
expected value of V0 is ∆, and the previous expression can be written as

Va = 2∆ + e∆, (9.5.1b)

with the expected offspring cell size being V 0 = V a/2 = ∆ because the expected value
of e∆ (denoted by the overline) is equal to zero.

If, however, there is directional selection on cell size, the mean value e∆ is no
longer equal to zero, as the cells with more extreme deviations are differentially pro-
moted. Instead, in the first generation of selection, the average offspring cell size
becomes

V 0(1) = ∆ + (e∆/2)

assuming that on average half of the mean environmental deviation in the previous
generation is transmitted to each offspring cell. If this same level of selection is con-
tinued for another generation, the mean becomes

V 0(2) = ∆ + (e∆/2) + (e∆/4)

as a new deviation is added while half of the prior deviation is partially removed by
50% dilution. Using the series expansion

t∑
i=1

xi =
x(1− xt)

1− x
, (9.5.2)

with x = 0.5, after t generations of constant selection, the mean offspring size is

V 0(t) = ∆ + e∆[1− (1/2)t] (9.5.3)

which asymptotically approaches ∆ + e∆ as t increases.

This shows that the average size of cells in a population can quickly shift to a
new value without any genetic change, with a deviation from the nonselection value
∆ equal to the selection differential e∆. The central point is that owing to the partial
transmission of offspring deviations to subsequent generations, the mean phenotypes
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in a population are expected to change if directional selection persistently operates on
a cellular trait, even if there is no genetic basis for the deviations.

Notably, however, this selection response is transient in that if selection is relaxed,
the initial deviation e∆ declines by 50% each generation, rapidly returning offspring
cell volume to ∆. In contrast, any genetic contribution to the selection response would
remain following selection.

Finally, supposing extreme cells can sequester their excess endowment to a degree
that allows greater than 50% retention, then the use of Equation 9.5.2 shows that an
even greater transient boost can be obtained by selection on environmental deviations,
e.g., with x = 0.75, V 0(t) has an asymptotic value of ∆ + 3e∆.
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