14. PROTEIN MANAGEMENT

9 September 2021

Some of the more fundamental features of proteins were reviewed in the two preceding chapters, with a primary focus on native-state structures. We now move on to additional issues central to the life histories of proteins, most notably matters associated with folding assistance, post-translational modification, and protein disposal. Whereas much attention has been given to transcriptional control of gene expression (Chapter 21), these three phenomena provide additional dimensions to such management.

As noted in Chapter 12, many small proteins are capable of folding on their own without any external physical assistance. Such proteins must be endowed with amino-acid sequences carrying all of the “information” essential to acquiring proper three-dimensional structures. However, in virtually all organisms, numerous proteins require some form of folding assistance supplied by helper proteins called chaperones. Even in the presence of chaperones, some proteins fail to ever achieve their native states, and these must be disposed of to avoid misinteractions with other proteins that might lead to cellular malfunctions. Properly folded proteins must often be eliminated after completing their missions, and such selective disposal involves particular markings directing delivery to the cellular disposal machinery. Still other post-translational markings on proteins are specifically utilized as modifiers for particular subcellular functions.

In addition to outlining general aspects of protein management, this chapter also provides numerous examples relating to principles regarding the evolutionary properties of cellular features outlined in preceding chapters. For example, much of the machinery associated with protein-folding assistance and disposal consists of higher-order multimers that have frequently changed with respect to subunit number and type (Chapter 13). The coevolution of chaperones and their client genes raise issues of how a cellular feature with multiple substrates might become constrained by a “jack of all trades, master of none” syndrome; and once reliant on chaperone-assisted folding, a client protein may experience relaxed selection on self-folding capacity, and hence become locked into a state of dependency (Chapter 6). The sites of post-translational markings appear to be free to wander evolutionarily over protein surfaces, providing a means for the effectively neutral re-wiring of regulatory mechanisms (Chapters 6 and 21).

Chaperone Assistance
Chaperones provide a protective environment for confining and restricting the ways in which individual client proteins can move. This lowers the energetic barrier necessary to achieve a stable folding configuration, while also minimizing the potential for harmful interactions of unfolded proteins with others in the cell.

The widespread use of molecular chaperones across the Tree of Life poses numerous evolutionary questions. First, what are the mechanisms by which chaperones recognize their appropriate client proteins? Second, do certain classes of chaperones coevolve with individual client proteins in ways that make them less effective with others? Third, once a protein becomes reliant on chaperone assistance for proper folding, does this act as an evolutionary trap by further relaxing selection on features essential to self-folding? Fourth, does chaperone dependence facilitate the evolution of adaptations that would otherwise not be possible because of their negative effects on self-folding? Fifth, given that chaperones themselves consume ATP in the folding process, what is the energetic cost to the cell to producing and relying upon chaperones?

Phylogenetic diversity of chaperones. Because orthologs of some chaperones are found in all three domains of life, they were likely present in LUCA, possibly paving the way to the establishment of proteins longer than capable of self-folding. However, the substantial diversity of chaperone types within lineages also leads to the conclusion that these helper molecules have evolved more than once, often converging on similar molecular structures and mechanisms (Schilke et al. 2006; Stirling et al. 2006). Functional diversification of chaperones following gene duplication and sub/neofunctionalization has occurred on multiple occasions in eukaryotes (Abascal et al. 2013; Carretero-Paulet et al. 2013) and prokaryotes (Bittner et al. 2007; Wang et al. 2013; Weissenbach et al. 2017), likely driven by adaptive conflicts imposed by alternative client protein pools. Moreover, as will be outlined below, striking examples exist of evolutionary transitions between homomeric and heteromeric chaperone structures.

Only the most well-studied chaperone families in the three major domains of life will be introduced here. Unfortunately, chaperone-family nomenclature is difficult to navigate, as the notation for orthologous genes is often inconsistent among lineages. To avoid this morass, an attempt is made below to simplify via a slight abuse of taxon-specific notation. Many chaperones are referred to as heat-shock proteins, owing to their typical elevation in expression at extreme temperatures (and other extreme conditions), and such labels are often post-scripted by a number referring to the approximate size in kiloDaltons (a measure of mass, with one kD equivalent to ~ 7.5 amino acids), a notation that will be adhered to in a number of cases below. However, adding to the complexity of classification, not all heat shock proteins are exclusively involved in protein folding, with some being more closely associated with protein degradation and/or disaggregation.

In the bacterial domain, there are three major classes of chaperones: 1) Trigger Factor; 2) a consortium of Hsp40, Hsp70, and a Nucleotide Exchange Factor (NEF); and 3) GroEL/GroES. Each of these classes have diverse molecular architectures and are deployed in substantially different ways. Trigger Factor is a monomeric protein that binds to nascent peptides as they emerge from the ribosome, effectively producing a preliminary folding space without requiring ATP for function. Hsp40 (a
tweezers-like dimer) acts as a cochaperone, binding exposed hydrophobic patches on unfolded proteins and targeting them to Hsp70 (a monomer), which stabilizes the protein in an ATP-dependent manner. Hsp70 can also operate as an “unfoldase,” consuming ~5 ATPs per protein in the process, and has many other house-keeping roles, including guidance in delivering proteins to organelle destinations and un-coating of vesicles in eukaryotes (Sharma et al. 2010; Rosenzweig et al. 2019). NEF plays a regulatory role in these processes. Although this Hsp40/Hsp70/NEF system is extremely widespread among bacteria, at least one lineage appears to have lost it (Warnecke 2012).

The best studied of the bacterial chaperones is GroEL (more generally known as chaperonin 60, with the name GroEL being used for the *E. coli* protein). GroEL has a large barrel-like structure, consisting of two heptameric rings (with all 14 subunits derived from the same genetic locus), stacked back to back (Figure 14.1). Each ring comprises a separate chamber within which the folding of individual client proteins proceeds after closure by a cochaperone lid (another heptamer, called GroES). GroEL/ES function involves a form of allostery, with cycles of enclosure and release – the binding of ATPs to one ring result in the release of the GroES cap from the other. Substrate molecules are captured via interactions with their hydrophobic residues and then stretched and remodeled within the hydrophilic folding cage. Each round of turnover of a protein requires ~11 seconds and consumes seven ATPs, regardless of the substrate, one ATP for each of the subunits of the ring (Keskin et al. 2002; Ueno et al. 2004; Horwich et al. 2009). However, in *E. coli*, the half-time for completion of assisted folding is ~45 sec (Kerner et al. 2005), suggesting that an average client protein engages in ~4 folding attempts before success is achieved. This requires about 28 ATPs, and although some *E. coli* proteins require an average of ~40 cycles to achieve proper folding (Santra et al. 2017), this is still a relatively small price to pay, as the biosynthetic cost of a single amino acid is ~30 ATPs (Chapter 17).

GroEL is present throughout the entire bacterial phylogeny, with some species harboring multiple variants that are likely subfunctionalized with respect to client proteins (Lund 2009; Henderson et al. 2013). However, a few bacterial species (e.g., some species of *Mycoplasma* and *Ureaplasma*; Wong and Houry 2004) seem to have lost GroEL. Random mutagenesis studies indicate that *Ureaplasma* proteins are just one or two mutations removed from GroEL dependence (Ishimoto et al. 2014), further evidence for the point made in Chapter 12 – that proteins commonly evolve to be just beyond the margin of stability. There is also some evidence that not all bacterial GroELs follow the *E. coli* model of oligomeric structure, with dimeric or tetrameric structures likely present in some taxa. It is difficult to see how such reduced structures could serve as chaperones, and they may have entirely different functions, as GroEL is known to have secondary functions in a number of species, e.g., adhesion to host cells, secretion, DNA binding, cell-cell communication, and even toxicity (Henderson et al. 2013).

Like bacteria, many archaea deploy chaperones in the Hsp40/Hsp70/NEF group, suggesting that this particular family dates back to LUCA. However, Hsp40 and Hsp70 are apparently absent from the most thermophilic archaea, which is surprising given the negative effects of high temperature on folding stability, and those thermophiles containing them appear to have acquired them by lateral transfer.
CHAPTER 14

from bacterial lineages (Macario et al. 2006). Archaea do not harbor Trigger Factor (Laksanalamai et al. 2004), although there is an apparently unrelated mechanism for dealing with nascent proteins emerging from ribosomes (Spreter 2005).

Although GroEL/GroES is absent from archaea except in rare cases of horizontal transfer (Hirtreiter et al. 2009), there is a chaperonin (CCT) with substantial structural similarity (Foundations 14.1). As with bacterial GroEL, the archaeal CCT, also known as the thermosome, forms a double-ringed barrel structure, but instead of there being a separate GroES-like cap, each monomeric subunit contains a built-in apical loop. These apical lids close like a camera iris, leaving a small opening, which may enable proteins too large to enter the chamber in their entirety to experience progressive folding by threading (Rüßmann et al. 2012). Despite the similarity of the double-barrel architecture of CCT to the form of GroEL, it remains unclear whether the two are derived from a common ancestor, as there is only ~ 20% sequence similarity. In addition, the GroEL ring contains seven subunits, whereas CCT contains eight or nine (Archibald et al. 1999). Finally, prefoldin is a heterohexamer, consisting of two monomeric subunit types, that serves to transfer proteins to CCT.

Eukaryotes deploy several protein complexes to assist in protein folding, the major ones being: a ribosome-associated complex, consisting of Hsp40 and Hsp70 partners; Hsp90 (a dimer involved in both folding and aggregation suppression); prefoldin; and CCT. The eukaryotic prefoldin hexamer consists of six subunit types, as opposed to two in archaea, and all of the monomeric subunits of eukaryotic CCT are also encoded by different proteins (Foundations 14.1). Eukaryotic organelles (mitochondria and chloroplasts) utilize eubacterial-derived orthologs of GroEL and GroES, called Hsp60 and Hsp10 respectively, but unlike bacterial GroEL, mitochondrial Hsp60 operates as a single rather than a double ring.

As in bacteria, the eukaryotic Hsp70 proteins are monomers, containing one domain for protein binding and another for ATPase activity. Hsp70 has commonly diversified into a dozen or more copies in various eukaryotes, and Hsp40 even more so (Craig and Marszalek 2011; Bogumil et al. 2014). Moreover, the ancestry is mixed, with some showing greater phylogenetic affinities to bacteria and others to archaea. As in bacteria, the eukaryotic system initiates with a Hsp40 protein recruiting a client protein and then stimulating Hsp70 ATPase activity to capture and assist in folding of the client protein. Eukaryotic Hsp70s commonly operate with several different Hsp40 proteins, but specialization also occurs.

As with bacterial GroEL, eukaryotic CCTs often have accessory functions (Henderson et al. 2013). For example, the specific system operating as a chaperone in the mitochondrion is also involved in mitochondrial genome maintenance and protein import. Hsp90 proteins are found throughout eukaryotes, with separate families operating in the cytoplasm, the endoplasmic reticulum, the mitochondrion, and the plastid (in plants), and these interact with a diversity of cochaperones, with numerous secondary functions, patchily distributed among various branches of the eukaryotic tree (Johnson and Brown 2009; Taipale et al. 2010; Johnson 2012).

If any generalities emerge from this morass of complexity, it is that all of cellular life depends on protein complexes specifically assigned to protein folding. Yet, despite the essentiality of these conserved functions, the structural constituents of chaperones have been modified on numerous occasions. This must have been accom-
plished in such a way that basic folding capacity remained uncompromised during such transitions. There is no evidence that the systems established in any particular lineage are fundamentally superior in any ways to those in others, but as discussed below, each system must be specifically tuned to its resident client proteins.

Client-chaperone coevolution. Unlike enzymes, chaperones typically have a wide variety of client substrates. In *E. coli*, for example, ~20% of the ~4000% encoded proteins are chaperone dependent – at least 250 appear to rely on GroEL for proper folding, while another 400 or so rely on Hsp40/70, about 170 are serviceable by both, and fewer than 20 are substantially influenced by Trigger Factor (Kerner et al. 2005; Fujiwara et al. 2010; Niwa et al. 2012). In yeast as well, ~20% of proteins are targeted by Hsp90 alone (Taipale et al. 2010).

Such a vast repertoire of substrates raises questions about the degree to which the features of chaperone systems are compromised by the numbers of client genes, the issue being that any evolutionary movement toward a better fit of one client may diminish the effectiveness with others (Lynch and Hagner 2015). Wang et al. (2002) acquired some insight into this matter by engineering *E. coli* to carry a foreign protein (GFP, green fluorescent protein, carried on a plasmid) and then imposing a selective challenge on cultures to improve the folding of GFP into functional molecules. This resulted in the evolution of a novel GroEL variant with substantially improved GFP folding but a reduced ability to fold normal client proteins, consistent with the chaperone being intrinsically constrained by the need to simultaneously satisfy the needs of multiple interactors (Figure 14.2).

Another potential example of such a compromise is the reliance of eukaryotic actins and tubulins on chaperones for the production of properly folded monomeric subunits. Together, these two molecules form the cytoskeleton, serve as highways for the transport of various cargos, and have roles in numerous other central cellular functions (Chapter 16). Despite their relatively simple and highly conserved structures, and a history extending back to at least LECA, in no case have the monomers of either protein been found to be capable of self-folding. Instead, both are major clients of CCT, which appears to have evolved specialized features for such processing (Llorca et al. 2001). Although bacterial GroEL will bind both actin and tubulin, it is incapable of guiding them to their native conformations (Tian et al. 1995). Moreover, unlike the situation with GroEL, where proteins are processed in a chamber with hydrophilic walls, CCT folding assistance involves binding of the substrate to the apical domains of the internal chamber. Thus, given the high intracellular concentrations of actins and tubulins, it is plausible that fine-tuning for processing these key client proteins imposes strong constraints on the capacity to assist alternative substrates.

A third potential example of chaperones coevolving with client features involves populations experiencing deleterious mutation-accumulation as a consequence of serial bottlenecks. Notably, GroEL comprises up to 70% of the protein in some insect endosymbiotic bacteria, which are thought to experience increased random genetic drift owing to their vertical transmission from maternal to daughter insect. This has led to the suggestion that the elevated investment in chaperones arose as a mechanism to accommodate the accumulation of mildly deleterious mutations in the endosymbiont’s protein-coding genes (Moran 1996; Fares et al. 2004). Notably,
however, such drift-prone bacterial lineages experience even more accelerated rates of sequence evolution in the chaperones themselves than in other proteins (Herbeck et al. 2003; Warnecke and Rocha 2011). This coincident elevation of amino-acid substitutions in both chaperones and client proteins then raises questions as to whether the force driving these changes is adaptive remodeling of key chaperone motifs in response to major mutations in specific client genes, and/or whether chaperone over-expression is an evolutionary compensation for its own reduced catalytic capacity.

Given their large size, high baseline expression levels, and reliance on ATP, chaperones such as GroEL comprise a significant fraction of the energy budget of a cell. Thus, elevated chaperone expression may come at a considerable cost that is only warranted under extreme genetic conditions. Experimental data do suggest that bacterial cells respond physiologically to the genome-wide accumulation of deleterious mutations by up-regulating GroEL expression. For example, Maisnier-Patin et al. (2005) observed such a response in mutation-accumulation lines of Salmonella, with additional artificial enhancement of GroEL expression resulting in still further increase in fitness. Similarly, Fares et al. (2002) found that lines of E. coli allowed to accumulate enough mutations to reduce fitness by \(~50\%\) were restored to \(~90\%\) fitness following the overexpression of GroEL; and this type of observation extends to Hsp70 (Aguilar-Rodriguez et al. 2016). In contrast, E. coli cultures maintained at large population sizes often evolve reduced GroEL expression, possibly as a consequence of selection for mutations that reduce unnecessary energetic expenditure (Sabater-Múnoz et al. 2015).

Selection for improved client-protein folding is not the only constraint on the architectural features of chaperones. Most notably, owing to their roles as safe havens for protein assembly, chaperones are vulnerable to exploitation by pathogens. For example, the genome of bacteriophage T4 (a virus of E. coli) codes for a protein that is a molecular mimic of GroES and uses this feature to assemble its head proteins with GroEL (Keppel et al. 2002). Many other bacteriophage are dependent on host-encoded chaperones for proper development (Nakonechny and Teschke 1998; Karttunen et al. 2015). In fact, it was a serendipitous study of bacteriophage that led to the discovery of GroEL/GroES – the finding of E. coli mutants that promoted defective bacteriophage capsid assembly (Georgopoulos 2006). Many eukaryotic viruses also rely on host-cell chaperones to complete their life cycles (Geller et al. 2012). The degree to which selection to avoid processing proteins associated with cellular parasites directly conflicts with selection for efficient handling of a cell’s endogenous proteins remains unclear.

Many other open questions remain with respect to the coevolution of chaperones and their client proteins, including the extent to which clients become evolutionarily addicted to assisted folding once reliance on a chaperone has become initiated. Following the sort of scenario outlined in Chapter 6, with a reliable mechanism of assisted folding in place, mutations that would otherwise prevent self-folding of a protein might be expected to accumulate. However, a phylogenetic analysis of the clients of human Hsp90 suggest that this is not the case, with both gains and losses of chaperone dependence being common (Taipale et al. 2012).

Much of the uncertainty here is a consequence of the low level of understanding of the precise mechanisms by which chaperones identify their client proteins,
as such details are central to all aspects of coevolutionary engagement and escape. Rousseau et al. (2006) suggest that 10 to 20% of the residues within proteomes across the Tree of Life are contained within segments with a capacity for aggregation if unfolded, but that such regions tend to be flanked with positively charged amino acids (arginine, lysine, and proline) that are targets of chaperones. Less clear, however, is whether the latter sequences arose in response to the accumulation of aggregative sequences, or appeared first and simply paved the way for the safe accumulation of otherwise adhesive residues. If the former is involved, this then imposes the challenging question of why selection should not minimize the accumulation of aggregative features to start with, as opposed to accepting such properties and then making compensatory modifications to minimize their effects.

Chaperone-mediated phenotypic evolution. Given that chaperones modulate protein quantity and quality, the question arises as to whether such activity can influence individual phenotypes in such a way as to modify the course of evolution. In the never-ending saga of searching for higher evolutionary purposes of traits, one particularly extreme view has been promoted – that chaperones facilitate adaptive evolution by buffering the normally deleterious effects of mutant alleles, thereby encouraging the effectively neutral build-up of a load of hidden but latent phenotypic effects. The idea that such variation might be exposed if the chaperone system becomes overwhelmed in a stressful environment lead to the suggestion that chaperones can act as “capacitors” for evolutionary change by fostering the expression of conditionally beneficial effects (Rutherford and Lindquist 1998). Further imagining that stressful environments are precisely the ones within which aberrant phenotypes are most likely to have utility lead to further speculation that chaperones (in actuality, their liability to becoming overwhelmed) enhance the ability of populations to adapt to extreme selective challenges. If sustained, this might somehow eventually lead to the constitutive expression of the previously suppressed variant, moving a population into an entirely new phenotypic domain.

Multiple arguments shed doubt on the credibility of these ideas (Levy and Siegal 2008; Tomala and Korona 2008; Siegal and Masel 2012). First, because chaperones service hundreds of client proteins, for adaptive capacitance to work, the exposure of any single transiently beneficial variant must outweigh the consequences of a likely vast array of other exposed deleterious variants. Second, there is the issue of how a variant that is not expressed for considerable periods of time can avoid the neutral accumulation of still more deleterious, condition-dependent mutations, thereby eventually being rendered nonfunctional when exposed. Third, if some mechanism does exist by which transient exposure could lead to the expression of a novel protein function, then what becomes of the original function? Fourth, the suppression of chaperone activity can lead to the release of mobile-element activity (Specchia et al. 2010) and/or elevated rates of production of aneuploid progeny (Chen et al. 2012), imposing additional negative consequences. Fifth, for the entire scenario to work, chaperone stress must last long enough to keep the extreme phenotype exposed to selection to enable mutation to produce a mechanism for constitutive expression, but short enough to avoid population extinction. A key point here is that the entire narrative relies on a time-scale argument that chaperone limitations are promoted on the basis of their long-term benefit to the lineage, ignoring the fact
that individual-level selection operates in the present and has no capacity to see into the future.

Finally, implicit in the argument that compromised chaperone capacity leads to a release of latent variation is the assumption that chaperones normally buffer the effects of new mutations. In fact, the empirical evidence suggests otherwise. In yeast, whereas the effects of standing variation are muted by chaperone activity, the phenotypic effects of de novo mutations are actually magnified on average (Geiler-Samerotte et al. 2016). This implies that natural selection differentially promotes alleles whose effects are buffered by chaperones, not the other way around.

This being said, although it is extremely unlikely that chaperones have been advanced to enhance long-term evolvability, they may nonetheless play roles in short-term evolutionary processes. An example of how chaperones might mediate the evolution of a novel protein function is provided by an experiment in which an expendable protein in Pseudomonas aeruginosa, phosphotriesterase, was selected for a novel arylesterase function (Wyganowski et al. 2013). In the experimental system, by controlling the expression of GroEL, it was possible to select for protein function under conditions of either high or low chaperone activity. High chaperone levels allowed the advancement of protein variants with elevated catalytic activity but low folding stability, whereas subsequent return to a low level of GroEL imposed strong selection for compensatory mutations against destabilizing mutations. Several rounds of such selection eventually led to a 10^4-fold increase in arylesterase activity and a near absence of GroEL dependency. Additional experiments of this nature led to the improvement of the catalytic performance of other enzymes at the expense of self-folding capacity (Tokuriki and Tawfik 2009).

This kind of experimental result, reliant on a highly contrived situation—alternating periods of high and low GroEL expression, and selection on a nonessential protein, needs to be tempered with the kinds of patterns actually seen with natural GroEL clients. Contrary to expectations under the hypothesis that chaperones lead to a relaxation of selection on protein evolution and/or facilitate movement into new adaptive domains, the client proteins of GroEL tend to be slowly evolving (Williams and Fares 2010). Although the subset of clients that are obligately dependent on GroEL and Hsp70 do evolve somewhat more rapidly at the protein-sequence level (Bogumil and Dagan 2010; Williams and Fares 2010; Aguilar-Rodriguez et al. 2016; Kadibalban et al. 2016), such a pattern could also exist for reasons unassociated with folding.

In summary, all of the preceding observations strongly support the view that the function of chaperones is to suppress the negative phenotypic consequences of problematic protein folding rather than to store away hopeful monsters. There is no known evolutionary mechanism to advance a cellular feature for the specific purpose of allowing the long-term accumulation of suppressed variation with conditionally beneficial effects in some future environment. Pushing most essential genes beyond their capacities leads to aberrant, pathological phenotypes, so there is nothing particularly unique about the phenotypic consequences of overtaxed chaperones.

More generally, the broader idea that various biological features have emerged specifically to enhance the long-term evolvability of species (as opposed to short-term survival at the individual level) is without support and largely incompatible with evolutionary theory. It is true that, provided the energetic cost is not too
great, any mechanism that can sufficiently increase the robustness of an organism to perturbations can be selectively favored (de Visser et al. 2003), provided the strength of selection exceeds that of random genetic drift. However, it does not follow that the assimilation of such a mechanism into a species owes its existence to selection for the long-term evolutionary flexibility of the lineage, nor even that there are any long-term benefits. More likely, there are disadvantages. Although selection for a robustness-enhancing feature may hide background defects in the short-term, in the long run, a new load of defects is expected to bring the population back to the previous fitness state, but with the added expense of maintaining a new layer of surveillance machinery (Frank 2007; Gros and Tenaillon 2009; Lynch 2012). In this sense, the idea that natural selection produces fundamentally superior organisms by adding layers and layers of buffering mechanisms to stabilize high fitness is an illusion (Chapter 20).

Disposal by Proteasomes

All organisms are confronted with the challenge of disposing of proteins that are structurally aberrant (owing to improper folding), functionally unnecessary or inappropriate (owing to the prior completion of their tasks), or damaged by a wide variety of intracellular effects (such as thermal denaturation and oxidation). To accomplish such tasks, most prokaryotes and possibly all eukaryotes harbor a special molecular machine, the proteasome, to carry out protein disposal in an ATP-consuming process. The proteasome consists of a barrel-like structure, reminiscent of that found for the CCT noted above, which provides a safe compartment for confining protease activity to target proteins and protecting desirable proteins from proteolysis.

The proteasome exhibits a phylogenetic gradient in complexity similar to that seen for CCT chaperones. In archaea, eukaryotes, and a few bacteria, the barrel consists of four layers of heptameric rings, with the outer rings forming a pore through which cargoes are delivered. In most archaea, the two inner (β) active rings are homomeric, comprised of catalytic subunits encoded by a single locus, and the outer (α) scaffold rings are homomers of another gene product. In contrast, in eukaryotes each of the fourteen subunits (seven for the α and β rings, respectively) are encoded separately, although only six of the seven subunits on the internal ring carry active sites (Pühler et al. 1993). Based on their phylogenetic distribution, the origin of all fourteen distinct subunits predates LECA (Bouzat et al. 2000), consistent with the hypothesis that substantial gene duplication occurred on the branch between FECA and LECA.

In contrast to the situation in archaea and eukaryotes, the bacterial proteasome is generally comprised of two homomeric rings with six subunits, although archaeal-like structures with seven identical subunits are found sporadically throughout the bacterial domain (Valas and Bourne 2008; Fuchs et al. 2017, 2018). Thus, although varying in structure, the proteasome dates back to LUCA, and we are again confronted with both an increase in the complexity and an expansion in the number of subunits of the eukaryotic proteasome, which requires an evolutionary alteration of binding interfaces (Foundations 15.1). In parallel with this shift in complexity, the proteasome regulator proteins, which control the entry of cargo proteins, consist of
at least six different subunit types throughout eukaryotes but only one in archaea (Fort et al. 2015).

In parallel with the proteasome, numerous other proteases operate in both prokaryotic and eukaryotic cells (e.g., Clausen et al. 2011). Many of these complete the degradational process, as the proteasome only reduces substrates to short oligopeptides. Moreover, parallel machinery, the exosome and its regulatory proteins, exists for the disposal of RNAs (Makino et al. 2013). As in the case of the proteasome, the nine subunit barrel of the exosome has experienced an increase in complexity from archaea to eukaryotes (three vs. nine distinct polypeptides).

The targeting of proteins for removal is generally orchestrated by pathways dedicated to marking molecules with specific degradation signals. In eukaryotes, the most prominent mechanism by far is the ubiquitinylation pathway (Mogk et al. 2007; Sriram et al. 2011; Varshavsky 2011). In a series of three enzymatically guided steps, ubiquitin is delivered and ligated to specific lysine residues on target molecules in an ATP-dependent manner (Figure 14.4). From this starting point, chains of polyubiquitin are then further grown, providing a signal for proteasome delivery. Deubiquitinylation occurs prior to entry into the proteasome, sparing the ubiquitin molecules from degradation. The presence of all components of this pathway in some lineages of archaea, implies a pre-LECA origin, apparently with independent expansions and specialization of component parts in animals and land plants (Grau-Bové et al. 2015). Pathways with essentially the same features but quite different molecular participants exist in bacteria (Mogk et al. 2007; Mukherjee and Orth 2008), so an even earlier origin cannot be ruled out. In a related eukaryotic pathway, acetylation of specific N-end residues provides a signal for degradation (Hwang et al. 2010; Shemmory et al. 2013).

In addition to its central role in protein degradation, the ubiquitinylation / deubiquitinylation pathway provides a means of dynamically switching proteins between alternative functional states in a wide variety of cellular functions. These include the cell cycle, DNA repair, vesicle trafficking, and signal transduction (e.g., Hirsch et al. 2009; Raiborg and Stenmark 2009; Ulrich and Walden 2010). Remarkably, a number of pathogenic bacteria have independently evolved molecular mimics of ubiquitin ligases, enabling them to commandeer various aspects of the machinery of host cells (Hicks and Gálán 2010).

The ubiquitin-proteasome degradation pathway provides still another example of the importance of intracellular molecular languages in guiding key cellular events, in this case: 1) specific amino acids at the N-end of proteins define their susceptibility to ubiquitinylation; 2) specific internal sites of the target molecules are post-translationally modified by ubiquitin addition; and 3) the marked regions are read as indicators for proteasome delivery.

The recognition determinants for protein degradation generally consist of single amino acids at the leading ends of proteins, each serving as a stabilizing or destabilizing signal (Figure 14.5). The nature of these determinants (i.e., the recognition language) can differ among major groups of organisms (e.g., bacteria, land plants, and animals; Mogk et al. 2007). Further complicating things is the presence of enzymes for removing the initial methionine residues, other endopeptidases for severing small N-terminal peptide chains (thereby exposing new degradation determinants), and still others for converting some amino acids to others (e.g., Asn to Asp and
Gln to Glu in eukaryotes). The latter residues can be viewed as secondary/tertiary degradation determinants, as they are only effective after modification, and even then, often only after attachment of another amino acid that serves as the primary determinant (Arg in the case of eukaryotes). In the case of *E. coli*, Arg and Lys serve as secondary destabilizing factors, which become active after an attachment of Leu. It has been suggested that the Arg transferase utilized in eukaryotes is related to the Leu transferase in bacteria (Graciet et al. 2006).

Ubiquitylation is further guided by ubiquitin ligases, which recognize specific amino-acid sequence motifs for precise ubiquitin targeting, usually with a Lys serving as the ligation site. Dozens to hundreds of such ligases with unique recognition sequences are often encoded within individual genomes, providing specificity to the overall system.

Together, these two signals, one for overall stabilization/destabilization recognition and the other for ligase attachment of ubiquitin to specific sites, determine the half lives of individual proteins. As in the case of phosphorylation sites (below), the lysine sites specifically designated for ubiquitylation are only slightly more conserved over evolutionary time, suggesting a high degree of redundancy with respect to location but stabilizing selection on the total numbers of such sites per protein (Hagai et al. 2012; Lu et al. 2017).

Finally, although bacteria have a pathway for protein disposal quite like that of eukaryotes, including the use of N-end rules, the bacterial system is substantially simpler than in eukaryotes. Notably, a number of the destabilizing N-terminal amino acids in eukaryotes are the same as those in bacteria, suggesting a common ancestry of this degradation system in these two phylogenetic lineages. Varshavsky (2011) has suggested that, despite its increased complexity, the eukaryotic system is no more efficient than that in bacteria, with “overdesign” in the former having arisen by effectively neutral processes that drove the increase in complexity during phases of reduced effective population sizes.

Post-translational Modification

A key stage in the life histories of many proteins is the post-translational covalent linkage of small molecules to a small fraction of amino-acid residues. The diversity of known modifications is substantial, ranging from small phosphoryl, adenyl, acetyl, and amide groups to larger molecules such as sugars and fatty-acid chains to entire proteins such as ubiquitin (as just discussed). Although it appears that all amino acids can participate in such interactions, the exact residue marked in any situation depends on the organism and cellular pathway. The functions of such markings are known in just a few cases, but post-translational modifications can lead to changes in structure, stability, and/or localization of the affected proteins.

Thus, although the classical view of gene regulation focuses on expression modification at the level of transcription (Chapter 21), post-translational modification adds a number of additional dimensions in both prokaryotes and eukaryotes. There are many similarities between transcriptional and post-translational regulation: both involve trans-regulating proteins with interactions specific to simple cis-binding sites; both are subject to divergence with nonfunctional consequences;
and both are typically under some form of purifying selection.

Although post-translational modification is largely uncharted territory for the field of evolutionary biology, one major target of inquiry involves phosphorylation. Additions of phosphoryl (PO$_4^{2-}$) groups are generally restricted to serine and threonine residues, but extend to tyrosine in animals, and arginine, aspartic acid, cysteine, and histidine in bacteria. Covalent attachment of phosphoryl groups is generally carried out by specialized enzymes called kinases, most of which have simple recognition sites comprised of the substrate amino acid plus just two to four flanking residues (Ubersax and Ferrell 2007; Ochoa et al. 2018). Such simplicity raises the opportunity for substantial promiscuity, often rendering inferences of functional significance from the simple observation of a phosphorylation site quite uncertain. Gratuitous phosphorylation may be difficult to select against, as the cost of just a few extra ATP hydrolyses is relatively small compared to the total cost of building a protein (the average cost of an amino acid being ~ 30 ATPs; Chapter 17).

The immediate effect of phosphorylation is the addition of a negative charge to the amino-acid recipient, which will often have downstream effects including protein activation or inhibition. In addition, protein phosphorylation has the additional property of being rapidly reversible by use of specific phosphatases (Chapter 22). Substantial genomic resources are invested in post-translational modifications of this sort. For example, $\sim 2\%$ of the yeast genome is devoted to protein kinases (Zhu et al. 2000), with $\sim 10,000$ phosphosites distributed over $\sim 2,300$ proteins. Over 500 kinases and 200 phosphatases are encoded in the human genome (Manning et al. 2002; Alonso et al. 2004).

Proteome-wide comparative data provide insights into the long-term evolutionary stability of modified residues. Comparative studies in yeasts and mammals indicate that many phosphorylated serines and threonines are under purifying selection to retain their phosphosite status (Gray and Kumar 2011; Levy et al. 2012), and sites known to have functionally relevant phosphorylation are more conserved than those with no known function. There is also evidence that phosphorylation sites undergo subfunctionalization following gene duplication (Amoutzias et al. 2010; Freschi et al. 2011; Kaganovich and Snyder 2011), with each member of a paralogous pair partitioning up the ancestral sites, although the functional significance of this remains unclear. Although not all phosphosites are simply evolving neutrally (Landry et al. 2009; Nguyen Ba and Moses 2010), a large fraction of such sites appear free to vary among species in terms of status and location (Moses et al. 2007; Holt et al. 2009; Freschi et al. 2014; Studer et al. 2016). For example, only $\sim 5\%$ of all phosphorylation sites appear to have been conserved across the entire yeast lineage (dating back ~ 700 million years), and even when the same phosphorylatable residue is present in two moderately related species, their phosphorylation status may differ.

Phosphorylation sites are typically clustered on the surface of a protein or in disordered regions, and the critical feature may simply be the acquisition of an adequate local charge. Notably, aspartic-acid and glutamic-acid residues, which are naturally charged positively, serve as potential replacements (and/or sources) for their phosphorylatable counterparts (although interconversions require two nucleotide substitutions per codon), i.e., phosphosites often evolve from phosphomimetic Asp and Glu sites and vice versa (Kurmangaliyev et al. 2011; Pearlman et al. 2011; Diss et
Taken together, these observations suggest a scenario whereby the degree of a protein’s phosphorylation is essentially a quantitative trait under stabilizing selection for an appropriate total positive charge, with the specific locations of many of the affected residues free to wander in an effectively neutral fashion (Lienhard 2008; Landry et al. 2014). That is, the level of phosphorylation of individual proteins appears to operate as a sort of quantitative trait, with the total number of phosphorylated residues being conserved, but enough degrees of freedom that there can be considerable turnover of the specific phosphosites (Foundations 14.2).

Summary

- As all organisms harbor proteins whose proper folding requires assistance from chaperones, such facilitators must have been present in LUCA, and likely paved the way for the establishment of proteins longer than capable of self-folding. Despite their critical functions, the families of chaperones have diversified substantially with respect to multimeric structures, with expansions in complexity being most extreme in eukaryotes.

- The process of chaperone-assisted folding is relatively cheap, on the order of the biosynthetic cost of one to a few amino acids, although the structures themselves are complex and can constitute a substantial fraction of the protein within a cell.

- As the number of chaperone systems per cell is dwarfed by the number of client proteins, coevolutionary conflicts arise with respect to the recognition of specific client proteins, with the fine-tuning to any one particular client reducing the affinity to others.

- Chaperones are also commonly exploited as assembly chambers for the capsids of viruses, presumably imposing still additional pressures on their recognition capacities. The degree to which this is a driving force remains unclear, but some eukaryotic chaperones are known to evolve at very high rates, possibly as a consequence of host-pathogen coevolutionary arms races.

- The extent to which client proteins become addicted to the safe havens of chaperones, and embark on a path of no return to self-folding, is unclear, but the relatively low cost of such dependence may mean that many proteins are not far from drifting down a path of chaperone dependence.

- It has been argued that chaperones serve as capacitors of adaptive evolution, by hiding the deleterious effects of mutations in benign environments but releasing novel phenotypes when stressful environments overwhelm the surveillance system.
There is, however, no direct support for this speculation, and multiple lines of evidence are inconsistent with it.

- Essentially all organisms have systems for selectively degrading damaged or superfluous proteins, generally starting with a barrel-like machine called the proteasome. Selective disposal relies on detailed communication rules between motifs on target molecules and a system of enzymes for marking specific sites as indicators for disposal. The baseline system appears to date back to LUCA, although the complexity of the processes has expanded in eukaryotes, perhaps by effectively neutral processes.

- Across the Tree of Life, the fates and functions of numerous proteins are determined by post-translational modifications involving the covalent bonding of various side groups to specific amino acids. Best studied in the case of phosphorylation, the specific locations of many such sites appear free to wander in an effectively neutral fashion provided their local density remains the same.
Foundations 14.1. The CCT complex. The CCT (chaperonin containing tailless complex) presents a striking example of a transition of a multimeric protein from a homomeric to a complex heteromeric state. Restricted to archaea and eukaryotes, CCT chaperonins are generally double-barreled hexadecamers (occasionally octodecamers), i.e., with 8 or 9 monomeric subunits per barrel (Archibald et al. 1999, 2001). In archaea, the overall structure is heteromeric with two or three alternating subunits (in 8- or 9-component barrels, respectively) or homomeric. The evidence suggests that conditionally deleterious mutations have accumulated in the contact regions between paralogous subunits in heteromeric archaeal CCTs, with compensatory mutations then serving to create a sort of evolutionary entrapment (Ruano-Rubio and Fares 2007). Under this hypothesis, the ancestral CCT was a homo-oligomer that then diversified in architecture following gene duplication, but with effectively neutral evolution and no necessary change at the functional level (Archibald et al. 1999). However, the evolution of complexity is not unidirectional in CCT, as there are examples of the reversion of heteromeric complexes to homomers.

In contrast, all of the subunits in eukaryotes are encoded by separate genetic loci. With eight different subunits per ring in the eukaryotic version of CCT, there are $8! = 40,320$ possible arrangements, and yet it is thought that just one assembly is consistently achieved in the cell (Kalisman et al. 2012). The underlying duplication and divergence of subunits occurred early in eukaryotic history, apparently pre-LECA, as the different subunits within a species are more divergent from each other than are orthologous subunits across major phylogenetic lineages (Fares and Wolfe 2003). Moreover, the eight eukaryotic duplicates appear to diverge at the protein level at rates exceeding the neutral expectation, suggesting positive selection for diversification in function, potentially with each subunit being relatively specialized to a different set of client proteins (Fares and Wolfe 2003; Joachimiak et al. 2014).

Understanding the evolution of an initially homomeric ring into such a complex heteromeric state imposes several challenges. At each evolutionary step, a mechanism is required to permanently preserve both the new and the old members of the complex, either via the gain of a beneficial function or complementary losses of subfunctions (Chapter 13). Moreover, the addition of each new member of the ring likely requires the fixation of at least two mutations, as ring architectures necessitate that each subunit be involved in two distinct interfaces. Each step of the process also raises the above-noted problem of hetero-oligomerization – the assembly of heterogeneous mixtures of subunits in individual complexes that is likely to exist until a high level of interface specificity has evolved (Figure 14.5). Understanding these kinds of issues is not peculiar to chaperone evolution, as numerous other cellular features have ring-like structures, e.g., the nuclear pore (Chapter 15), the proteasome (this chapter), and a number of DNA-binding proteins in eukaryotes (Chapter 10).

Foundations 14.2. The evolution of a digital trait. Phosphorylation and other post-translational modifications are examples of digital traits, in the sense that they have a very simple molecular basis with the possible phenotypes taking on integer values (equal to the number of modified amino-acid residues). Many other cellular features have this property, e.g., the number of residues involved in binding of a protein to its substrate, and the number of saturated and unsaturated bonds in a lipid molecule.

Such restriction of simple molecular traits to discontinuous values may impose unique evolutionary consequences. For example, the optimum binding energy for a
particular trait may be unattainable unless it coincides with an integer multiple of the underlying granularity. If this is not the case, two allelic states straddling the optimum may have nearly the same fitness, resulting in an essentially neutral process of molecular evolution combined with a permanent state of suboptimal fitness. In addition, if certain suboptimal allelic states are more accessible by mutation, this can compete with the ability of selection to promote higher-fitness states. As will be discussed below, such conflicts are present even in the absence of mutation bias. Finally, if a system has excess capacity, such that the typical state (e.g., number of modified residues) is well below the maximum possible value, substantial drift is possible among alternative phenotypes with equivalent effects.

Drawing upon an approach introduced in Chapter 5, here we consider a simple model for exploring these issues, with \(\ell \) equivalent sites (factors), each with two alternative functional states, + and −, contributing positively and negatively to the trait. Under this model, a multiplicity of functionally equivalent classes exists with respect to the number of positive alleles (\(m \)). As an example, for the case of \(\ell = 4 \), there are five genotypic classes (\(m = 0, 1, 2, 3, 4 \), and 5), with multiplicities 1, 4, 6, 4, and 1, respectively (Figure 14.6). These multiplicities are equivalent to the coefficients of a binomial expansion, e.g., \((x + y)^m\). With equivalent fitness for all members within a particular class, this variation in multiplicity of states plays an important role in determining the long-term evolutionary distribution of alternative classes – all other things being equal, classes with higher multiplicities are more accessible over evolutionary time.

As discussed in Foundations 5.2, a system like this yields an equilibrium distribution of a population occupying alternative states over a long evolutionary time period, given constancy of the population-genetic environment. That is, over time the mean phenotype is expected to wander within limits dictated by the strength of selection for alternative classes, the degree of mutation bias, and the power of random genetic drift. Justification of this quasi-steady-state view derives from the fact that many internal cellular traits have functions (and cytoplasmic environments) that have remained relatively stable for tens to thousands of millions of years (even in the face of a changing external environment).

In general, the probabilities of alternative states depend on the relative magnitudes of the transition coefficients between adjacent classes (Figure 14.6). Each of these coefficients is equal to the product of a multiplicity, a per-site mutation rate, and a probability of fixation of a new mutation. The per-generation mutation rates from a − to + state, and vice versa, are defined to be \(u_{01} \) and \(u_{10} \), respectively. The probability of fixation is given by the standard expression outlined in Chapter 4. A haploid, nonrecombining population is assumed here, so each set of functionally equivalent states comprises a genotypic class.

In the limiting case of neutrality, the equilibrium probability of any site being occupied by a + allele is simply \(\eta = u_{01}/(u_{01} + u_{10}) \), the fraction of the summed mutation rates in the + direction, and the states of all sites will be independent. (Here, the probability of fixation, \(1/N \), factors out because it is identical for all mutations). The neutral probability of a population residing in state \(m \) is then simply defined by the binomial distribution,

\[
\bar{P}_{\eta,m} = \binom{\ell}{m} \eta^m (1 - \eta)^{\ell - m}.
\]

(14.2.1)

Thus, in this limiting case, the probability distribution for the class types only depends on: 1) the ratio of mutation rates, not on their absolute values; and 2) the binomial coefficient associated with each class, which defines the multiplicity of equivalent states in the class. The long-term mean and variance of the trait under neutrality, defined by the properties of the binomial distribution, are \(\mu_n = \ell \eta \) and \(\sigma_n^2 = \ell \eta (1 - \eta) \), respectively.
Selection alters this baseline distribution by weighting each class by the factor e^{2N_e s_m} (with a 4 being substituted for the 2 under diploidy), where N_e is the effective population size, and s_m is a measure of the class-specific deviation of fitness from some reference point (e.g., from the fitness of the optimal phenotype). The quantity N_e s_m = s_m/(1/N_e) is equivalent to the ratio of the strength of selection relative to that of drift. The basis for this weighting term has already been discussed in Foundations 5.2 – it is the ratio of fixation probabilities from class m − 1 to m and vice versa.

The overall distribution can then be written as

\[\tilde{P}_m = \tilde{P}_{n,m} \cdot e^{2N_e s_m} = C \cdot \left(\frac{\ell}{m} \right) \beta_m e^{2N_e s_m}, \]

(14.2.2)

where \(\beta = u_{01}/u_{10} \) is the mutation bias (the ratio of mutation rates in both directions), and the normalization constant C is equal to the reciprocal of the sum of the terms to the right of \(C \) for \(m = 0 \) to \(\ell \), which ensures that the frequencies sum to 1.0. The term \((1 - \eta)^\ell\) from Equation 14.2.1 has been absorbed into \(C \), as it is a constant independent of \(m \), and the specific reference from which the class-specific fitness deviations are measured does not matter either, as it cancels out through the normalization constant. The mean phenotype is

\[\mu_m = \sum_{m=0}^{\ell} m \cdot \tilde{P}_m, \]

(14.2.3)

which reduces to \(\ell \eta \) in the case of neutrality.

As a specific example of the application of Equation 14.2.2, consider the case of a trait under stabilizing selection, such that the fitness of an individual in genotypic class \(m \) is denoted by the Gaussian function,

\[W_m = e^{-(m-\theta)^2/(2\omega^2)}, \]

(14.2.4)

where \(\theta \) is the optimum phenotypic value, and \(\omega \) is a measure of the width of the fitness function (analogous to the standard deviation of a normal distribution). Selection is purely directional if \(m = 0 \) or \(\ell \), and neutrality is approached as \(\omega \rightarrow \infty \). Although \(m \) is confined to integer values, \(\theta \) need not be. The selection coefficient can be arbitrarily defined as \(s_m = W_m - W_0 \).

An application of the Gaussian fitness function to Equation 14.2.2, shown in Figure 14.6, illustrates several general points. First, a gradient in the average class value (e.g., the number of phosphorylation sites) is expected with respect to the effective population size, the exact location depending on the strength of selection. When the fitness function is sufficiently flat that \(N_e \ll \omega^2 \), selection is overwhelmed by the power of drift, and the distribution converges on the neutral expectation, Equation 14.2.1. Only when \(N_e \gg \omega^2 \) does the force of selection overwhelm the power of drift to the extent that the population will almost always reside in state \(\theta \). This selection limit assumes that \(\theta \) is an integer. If this is not the case, the two attainable phenotypes straddling the optimum will be present as alternative states with frequencies depending on their relative fitnesses.

Second, there will frequently be two or more classes with probabilities substantially greater than zero, and sometimes with nearly equivalent values. The fact that populations will commonly have different phenotypic states even in a constant population-genetic environment raises significant reservations about the common practice of assuming that phenotypic differences are a consequence of different forms of selection.

Finally, because of the multiplicity of alternative, functionally equivalent states within each class, populations residing within the same class will commonly have different configurations of − and + states. For example, for the case of \(\ell = 10 \) and
two populations in state $m = 3$, the probability of no overlapping use of sites is $[1 - (3/10)][1 - (3/9)][1 - (3/8)] \approx 0.29$. At equilibrium in state $m > 0$, the probability of any specific + site in one population being − in another is $({\ell - m})/\ell$.

Fares, M. A., E. Barrio, B. Sabater-Muñoz, and A. Moya. 2002. The evolution of the heat-shock protein GroEL from Buchnera, the primary endosymbiont of aphids, is governed by positive

Mogk, A., R. Schmidt, and B. Bukau. 2007. The N-end rule pathway for regulated proteolysis:

Figure 14.1. An idealized cross-sectional view of protein processing by the GroEL chaperone. This molecular machine has a double (back-to-back) barrel shape, with each barrel consisting of a ring of seven monomeric units. Loading of the top barrel with a client protein combined with seven ATPs results in binding of the lid (GroES) and release of the processed protein from the bottom barrel.
Figure 14.2. A simplified view of some of the challenges to the evolution of a heteromeric ring molecule. When the first (red) variant of the monomeric subunit appears (either as an allelic variant, or as a duplicate gene), prior to sufficient sequence divergence, the two types are likely to form a diversity of hetero-oligomeric structures. If a pair of sufficiently distinct interfaces can be established, an organized architecture involving alternating subunits might be acquired, e.g., alternating white and red subunits in the case of an even-mer (above). A ring with an odd number of subunits imposes additional challenges; for example, in the first step (with two subunit types), the positions cannot be evenly divided between two monomeric subtypes. A final structure involving eight or nine distinct members of the ring requires several additional gene duplications followed by the evolution of two distinct binding interfaces by each monomeric subunit, with each step introducing stoichiometry issues.
Figure 14.3. An idealized view of the recognition “sequence space” for client proteins of a chaperone. The central red dot represents the position of the chaperone relative to the recognition profiles of its various client proteins. The closer the chaperone is to a hypothetical protein within this space, the better the recognition, with the black circle denoting the minimum distance necessary for recognition. In the upper panel, the chaperone has just one client protein, so the pair is free to wander through sequence space, so long as the matching specificity is kept within the minimum limit (denoted by the dashed arrows). In the lower panel, the chaperone has four client proteins, and this prevents the chaperone sequence from wandering, as any improvement with respect to one client protein is likely to reduce the affinity for others (e.g., movement of the red dot (chaperone) towards a particular client protein (other colors)).
Figure 14.4. The ubiquitin-proteasome pathway for protein degradation. E1, E2, and E3 are enzymes involved in sequestering and transferring ubiquitin molecules to specific sites on a target protein, with the build-up of poly-ubiquitin chains serving as a signal for harvest and partial digestion by the proteasome.

Primary destabilizing and stabilizing residues:

Modification and addition of destabilizing residue:

Tertiary signal	Secondary modification	Addition of Primary Signal
protein | protein | protein
Figure 14.5. Some of the N-end rules for the acquisition of protein-degradation signals known from yeast, land plant, and mammalian cells. In the lower panel, the tertiary signal asparagine (N) is converted to the secondary signal aspartic acid (D) by deamidation, and likewise for glutamine (Q) to glutamic acid (E), and then a transferase adds arginine (R), endowing the protein with a destabilizing residue. From Graciet and Wellmer (2010) and Varshavsky (2011).

Transition steps from a homomeric to a heteromeric even-mer (8 subunits):

Transition to an odd-mer (9 subunits)
Figure 14.6. **Top** Schematic for the transition rates (terms on arrows) between adjacent classes under the sequential-fixation model for the case of $\ell = 4$ sites. Under this model, transitions are rare enough (owing to small enough population sizes and/or mutation rates) that populations essentially always reside in pure states relative to the much less common polymorphic transition periods. Mutation rates towards $+$ and $-$ alleles are denoted by u_{01} and u_{10}, respectively. p_{xy} denotes the probability of fixation of a new mutation of state $m = y$ arising in a population of state $m = x$. **Bottom** Equilibrium genotype distributions for four effective population sizes, given for the situation in which the capacity of the system is $\ell = 20$, and selection is of a stabilizing nature with optimum genotypic value (for the number of $+$ alleles) $\theta = 7.0$ and width of the fitness function $\omega = 5000$. The mutation rate in the direction of $-$ alleles is assumed to be 10x that in the opposite direction. Results are derived by use of Equations 14.2.2 and 14.2.4. N_e denotes the effective population size.