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5. EVOLUTION AS A POPULATION-GENETIC PROCESS
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With knowledge on rates of mutation, recombination, and random genetic drift in
hand, we now consider how the magnitudes of these population-genetic features
dictate the paths that are open vs. closed to evolutionary exploitation in various
phylogenetic lineages. Because historical contingencies exist throughout the Tree of
Life, we cannot expect to derive from first principles the source of every molecular
detail of cellular diversification. We can, however, use established theory to address
more general issues, such as the degree of attainable molecular refinement, rates of
transition from one state to another, and the degree to which nonadaptive processes
(mutation and random genetic drift) contribute to phylogenetic diversification.

Substantial reviews of the field of evolutionary theory appear in Charlesworth
and Charlesworth (2010) and Walsh and Lynch (2018). Much of the field is con-
cerned with the mechanisms maintaining genetic variation within populations, as
this ultimately dictates various aspects of the short-term response to selection. Here,
however, we are primarily concerned with long-term patterns of phylogenetic diver-
sification, so the focus is on the divergence of mean phenotypes. This still requires
some knowledge of the principles of population genetics, as evolutionary divergence
is ultimately a consequence of the accrual of genetic modifications at the population
level. All evolutionary change initiates as a transient phase of genetic polymor-
phism, during which mutant alleles navigate the rough sea of random genetic drift,
often being evaluated on various genetic backgrounds, with some paths being more
accessible to natural selection than others.

The goal of this most technical of chapters is to summarize some of the more
general themes and challenges to understanding how evolutionary change is accom-
plished, ideally endowing the reader with an appreciation for why the population-
genetic details matter. With a specific focus on the ways in which selection acts to
promote novel adaptive changes, emphasis will be placed on how the efficiency of
selection is compromised or enhanced in different population-genetic environments,
sometimes in counter-intuitive ways. Special attention will be given to the ways in
which evolutionary rates and outcomes are expected to vary with the effective sizes
of populations (Ne).

Most of the theory presented here will be discussed in a generic way, focusing for
example on a mutation with selective advantage or disadvantage s, with no connec-
tion to the actual underlying trait(s). Such an approach allows for the development
of general statements as to what natural selection can and cannot accomplish, and is
a necessary prelude to more explicit exploration of particular traits where genotypes
can be directly connected to phenotypes and then to fitness. Specific examples to
be presented in later chapters include the evolution of protein-protein interfaces,
the coevolution of transcription factors and their binding sites, and the evolution of
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maximum growth-rate potential. Although the technical level of presentation here
may be disappointing to high-level theoreticians, the goal is not to overwhelm the
reader with a litany of equations and formal derivations, but to facilitate under-
standing as to how population-genetic theory transforms comparative cell biology
into evolutionary biology.

The Perils of the Adaptive Paradigm

Ever since Darwin, most discussions with any connection to evolutionary thought
generally start with the implicit assumption that all organismal traits are products
of the promotion of favorable mutations by natural selection. Such logic underlies,
for example, virtually every study in the field of evolutionary ecology. Closer to
the subject material herein, a massive number of papers in cell biology end with a
paragraph on why the trait being studied (and its sometimes arcane structure) must
have been refined by selective forces.

An appreciation for the power of natural selection is one of the great advances
of the life sciences over the past century. However, problems arise when the wand
of natural selection is deemed to be the only mechanism relevant to evolutionary
change, as this eliminates any hope for broader understanding of evolutionary pro-
cesses, and often leads to false narratives. Starting with the conclusion that the
phenotype under investigation is a necessary product of natural selection, the only
remaining challenge is to identify the actual agent of selection. If one hypothesis
fails, one moves on to another possibility, but always with unwavering certainty
that selection must somehow be involved. Many biologists have spent entire careers
wandering down such paths in search of an adaptive explanation for a particular
biological feature.

This is not to say that optimization thinking has completely mislead us with re-
spect to the evolution of alternative behavioral and/or life-history strategies. How-
ever, as touched upon in Chapter 4, the evolutionary outcomes that are actually
achievable by natural selection depend critically on levels of mutation, drift, and
recombination. Moreover, owing to the stochastic nature of these genetic features,
even under constant selective pressures, the phenotypic states of populations are
expected to wander over time. Indeed, as outlined below, the most common pheno-
type need not even be the optimum for a given environment, depending on the bias
and granularity of mutational effects.

To begin to explore these ideas, this chapter will close with an overview of
the concept of long-term steady-state distributions of mean phenotypes. This will
also provide a more formal analysis of the drift-barrier hypothesis introduced in the
previous chapter in the context of mutation-rate evolution, demonstrating the con-
ditions under which traits are expected to exhibit gradients in performance scaling
with Ne. The points being made here are not just arcane technical nuances. As
will unfold in subsequent chapters focused on particular cellular traits, owing to the
population-genetic and molecular features of biology, many aspects of evolution at
the cellular level are best understood not by invoking the all-powerful guiding hand
of natural selection, but through an appreciation of the factors that limit the reach
of selection.
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The Fitness Effects of New Mutations

Before proceeding with the theory, an overview of the fitness effects of mutations
is necessary, as this defines the landscape and potential granularity of evolutionary
change accessible to natural selection. As pointed out in Chapter 4, the vast majority
of mutations are stochastically lost early in their life histories, regardless of their
fitness effects, and if the absolute selective advantage/disadvantage (s) of a mutation
is much smaller than the reciprocal of the effective population size (1/Ne), natural
selection is incapacitated by drift. The key message below is that in all but the
largest-Ne species, a substantial fraction of mutations fall within the domain of
effective neutrality, 4Nes < 1. This means that the molecular resources for natural
selection differ among lineages with different Ne.

Although much remains to be learned, multiple lines of evidence point to the
vast majority of mutations having very small, detrimental fitness effects. Organisms
and their genomes are structured in such a way that most mutations have effects
on fitness orders of magnitude smaller than 0.1. Mutations with larger detrimental
effects do occur, but these are rare and rapidly eliminated from populations un-
less rescued by compensatory mutations elsewhere in the genome (below). Part of
the reason for the rarity of mutations with large effects is that, within the prevail-
ing bounds of random genetic drift, natural selection is often able to bring most
phenotypes to the vicinity of optimum achievable values (Fisher 1930; Rice et al.
2015).

For random genetic drift to impose a significant barrier to the evolution of a
trait, there must be a substantial pool of mutations with small enough effects that
they can drift to fixation in species with small but not large Ne, and this process
will be further facilitated if mutations are biased in the negative direction. Numer-
ous lines of evidence are consistent with both conditions. First, studies of serially
bottlenecked mutation-accumulation (MA) lines across diverse species consistently
reveal a slow per-generation decline in growth rate and other fitness traits (Keight-
ley and Eyre-Walker 1999; Lynch et al. 1999; Baer et al. 2007). Such experiments
start with a set of isogenic lines, which are then maintained for large numbers of
generations by propagation of just one (clone or selfer) or two (full-sib) individuals
per generation. With an Ne this small, natural selection is incapable of promoting
or removing mutations with fitness effects < 25% in these experiments, so the data
are in full accord with a strong bias of mutations towards deleterious effects. Fur-
thermore, statistical inferences based on the distribution of MA-line performances
imply highly skewed distributions of fitness effects. The modes for such distributions
are often indistinguishable from zero, with the bulk of mutations having absolute
effects < 1% (almost all negative), although mean deleterious effects can sometimes
be as high as 1 to 10% owing to the presence of rare mutations with large negative
effects (Keightley 1994; Robert et al. 2018; Böndel et al. 2019).

Second, indirect inferences derived from allele-frequency distributions in natural
populations of diverse multicellular species commonly suggest that 10 to 50% of
mutations have deleterious effects smaller than 10−5, with the inferred distribution
sometimes being bimodal, but always with one mode being near (if not at) 0.0
(Keightley and Eyre-Walker 2007; Bataillon and Bailey 2014; Huber et al. 2015;
Kim et al. 2017; Lynch et al. 2017; Booker and Keightley 2018; Johri et al. 2020). As
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many of these studies focus only on the nonsynonomous sites in protein-coding genes,
the full distributions of effects (which would include synonymous sites, introns, and
intergenic DNA) can be expected to be even more skewed towards near-zero values.
Substantial evidence also supports the idea that there is near universal selection for
G/C (relative to A/T) composition across the Tree of Life, and estimates of the
scaled strength of selection favoring G/C content at silent (synonymous) sites in
protein-coding genes are almost all in the range of Nes = 0.1 to 1.0, i.e., on the edge
of the domain of effective neutrality (Long et al. 2017).

Third, although the preceding inferences are based on indirect extrapolations
from statistical distributions, the costs of some kinds of mutations can be derived
from first principles. For example, from a knowledge of the total energy budget of
a cell and the biosynthetic costs of its building blocks, it is possible to estimate the
fractional reduction in cell growth rates resulting from various kinds of mutations
(Chapter 17). Bioenergetic considerations of the costs of small nucleotide insertions,
which typically comprise ∼ 10% of de novo mutations (Sung et al. 2016), imply frac-
tional reductions in fitness far below 10−5 (Lynch and Marinov 2015). Likewise, the
costs of using alternative amino acids or nucleotides from the standpoint of elemen-
tal (e.g., C, N, or S) composition imply that s associated with such substitutions is
generally � 10−5 (Chapter 18). Single residue changes in protein-protein interfaces
or DNA binding sites are expected to have similarly small effects (Chapters 13 and
21). Finally, broad surveys of single amino-acid substitutions in a range of proteins
generally imply that most such changes influence protein performance by < 1%, with
a large class indistinguishable from zero, and a second peak with very substantial
effects (Chapter 12).

Taking all of these observations into consideration, the existence of large pools
of mutations with deleterious effects small enough to allow fixation in some lineages
but large enough to ensure removal by selection in others is not in doubt. This being
said, however, a number of caveats remain. First, statistical limitations prevent us
from knowing with certainty the full distribution of mutations of small effects, e.g.,
the fraction of mutations with effects < 10−5, < 10−6, < 10−7, etc. This is a significant
concern – as we know that Ne ranges from ∼ 104 to 109 (Chapter 4), these are the
mutations that can be utilized vs. purged in some lineages but not in others.

Second, the data are inadequate to tell us whether the distribution of fitness
effects is substantially different among lineages, e.g., in bacteria vs. unicellular eu-
karyotes vs. multicellular species. Such differences might be expected purely on
physical grounds – the larger cells in lower-Ne species have higher total energy bud-
gets, and hence single nucleotide and/or amino-acid insertion/deletions will have
smaller fractional energy costs (Chapter 17). Whether the functional consequences
are also altered is unknown.

Finally, and most importantly, although most of the observations noted above
address the general fitness properties of random mutations, they are disconnected
from the actual cellular traits that we will wish to eventually explore, i.e., they do not
inform us as to the precise molecular targets/phenotypic effects of fitness-altering
mutations.

The Classical Model of Sequential Fixation
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The simplest entrée for considering the temporal dynamics of evolution under nat-
ural selection invokes the situation in which a trait is under persistent directional
selection, with the pace of evolution being slow enough that each consecutive adap-
tive mutation is fixed before the next beneficial mutation destined to fix arises.
In principle, such a scenario can exist if the supply of adaptive mutations is quite
limited owing to either a relatively small population size, a low mutation rate to
beneficial variants, or both. In this limiting situation, recombination is irrelevant be-
cause no two loci are ever simultaneously segregating polymorphisms at meaningful
frequencies.

This sequential model of molecular evolution (sometimes also called the strong
selection/weak mutation model or the origin-fixation model; McCandlish and Stoltz-
fus 2014) may only rarely represent reality as it assumes a constant march towards
higher fitness. However, it serves as a useful heuristic for thinking about several
issues concerning the limits to rates of adaptive evolution, and how they might scale
with population size.

The long-term rate of adaptation under this model is equal to the product of
the rate of introduction of beneficial mutations, the fixation probability of such
mutations, and their fitness effects: 1) The population-wide rate of origin of new
beneficial mutations is NUb for haploids and 2NUb for diploids, where Ub is the
mutation rate (per generation) to beneficial alleles. Depending on the focus, Ub can
represent a single gene or an entire haploid genome. 2) The probability of fixation
of a new beneficial mutation is ' 2s(Ne/N), where N and Ne are the actual and
effective population sizes, and s is the selective advantage relative to the ancestral
allele (Chapter 4). As Ne/N is almost always less than one, it can be thought of
as the efficiency with which selection promotes new beneficial mutations, with the
maximum rate being 2s. (Note that for diploids, it is assumed here that mutational
effects are additive, with heterozygotes having a fitness advantage 1+s intermediate
to the two homozygotes, 1 and 1 + 2s). 3) The increase in fitness per fixation is s
for haploids, but 2s for diploids.

The resultant expected rate of evolution in terms of fixations is the product of
the first two terms,

re = NUb · 2s(Ne/N) = 2NeUbs, (5.1a)

for haploids, and twice this for diploids. The increase in fitness is then equal to

∆W = re · s = 2NeUbs2, (5.1b)

for haploids, and 4× this for diploids. (Note that this difference between haploids
and diploids is merely a function of how the fitness effects are annotated in diploids.
If it is assumed that mutant heterozygotes and homozygotes have fitnesses 1 + (s/2)
and 1 + s, respectively, then Equations 5.1a,b hold for diploids).

This model is idealized in many ways, as it assumes long-term persistent se-
lection in one direction. Nonetheless, this simple approach highlights the key roles
that the individual population-genetic parameters play in dictating the potential
for evolutionary change. For example, all other things being equal, Equation 5.1
suggests that the rate of adaptive evolution should scale linearly with the effective
population size (not with the absolute population size) and with the genome-wide
beneficial mutation rate.
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However, there is room for caution in interpreting this expression as the speed
limit to the rate of adaptation. First, the conditions under which mutations are
likely to fix sequentially are limited. Sequential fixation requires that the average
time between fixations (the inverse of 4NeUbs for diploids) be greater than the mean
time required for each mutation to fix, which is ' (2/s) ln(2N) generations for a
diploid population (Walsh and Lynch 2018, Equation 8.4c). It follows then that for
sequential fixation to be the rule, 4NeUb must be smaller than 1/[2 ln(2N)]. Because
ln(2N) falls in the narrow range of 10 to 58 over a range of N = 104 to 1020, as
a first-order approximation, the sequential model will hold if the effective number
of beneficial mutations arising per generation is < 0.01, i.e., if no more than one
beneficial mutation for the trait arises per 100 generations at the population level.

How likely is this condition to be met? Recall from Chapter 4 that the product
of 2Ne and the mutation rate per nucleotide site per generation (µ) generally falls
in the range of 2Neµ = 10−3 to 10−2. Multiplying this number by the number
of selected sites in a chromosomal region and the fraction of mutations that are
beneficial converts this quantity to 2NeUb. With a moderate-sized region of 105

fitness relevant sites and just 0.01% of mutations being beneficial, then 2UbNe for
such a region would be in the range of 10−2 to 10−1, bracketing the strict cutoff
for the sequential model. This crude calculation demonstrates that the sequential
model cannot be assumed to be generally valid. These issues are evaluated in great
detail in (Weissman and Barton (2012) and Weissman and Hallatschek 2014).

One reason for concern here is that simultaneously segregating mutations (both
beneficial and deleterious) interfere with each other in the selection process, di-
minishing their individual probabilities of fixation (Frenkel et al. 2014). As new
beneficial mutations arise, their fates will be determined by the fitness of the linked
backgrounds in which they appear (Figure 4.2). Theoretical work suggests that se-
lective interference between linked beneficial mutations reduces the scaling of the
overall rate of adaptation from linear to as little as logarithmic in Ne beyond the
domain of the sequential model (Neher 2013; Weissman and Barton 2012; Weiss-
man and Hallatschek 2014). Cosegregating deleterious mutations may play a more
prominent role in reducing the rate of adaptive evolution, as the majority of de novo
mutations are deleterious. If tightly linked to a segregating deleterious mutation,
a beneficial mutation will not experience its full intrinsic advantage, and in some
cases will be completely overshadowed by the linked background load (Good and
Desai 2014). The central point is that although the effects of background variation
do not alter the expectation that the rate of adaptive evolution will scale positively
with Ne (all other things being equal), the gradient of scaling will likely decline with
increasing Ne.

All of these interference effects can be observed in long-term laboratory evolu-
tion experiments involving microbes. For example, Figure 5.2 illustrates the tra-
jectories of genome-wide mutant-allele frequencies in three replicate populations of
E. coli grown in just 10 ml of medium. Over a period of 60,000 generations, these
populations experienced an average 30% increase in fitness in the culture conditions,
albeit at a diminishing rate. The norm was for many mutations to be simultane-
ously polymorphic, and although many fixations of individual mutations can be
seen, more often than not, groups of mutations increase (and sometimes decline)
in a coordinated manner. This is a simple consequence of the clonal nature of the
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experimental populations, as a single, positively selected mutation driving to fixa-
tion sweeps along all linked “passenger” mutations (some of which themselves have
beneficial or deleterious fitness effects).

Examples can also be seen of mutations reaching very high frequencies in a short
period of time (which can only be due to positive selection), followed by a subsequent
decline to 0.0 as other more fit mutant clones take over. In one population, two major
clones, each containing multiple mutations, appear to reach equilibrium frequencies,
with neither going to fixation (middle panel); this may be a result of some form
of frequency-dependent selection, with each clone providing a metabolic product
beneficial to the other. In another case, there is a massive accumulation of mutations
near the midpoint of the experiment (lower panel), owing to the appearance of a
mutator strain, which may have hitchhiked to fixation in linkage with a beneficial
mutation that it promoted.

Compensating for these constraining effects from selective interference is the fact
that a larger fraction of beneficial mutations is exploitable in larger populations.
Owing to the fact that efficient selection requires |Nes| > 1 (Chapter 4), larger
populations have access to mutations with smaller s. Although this expansion in the
pool of available beneficial mutations will further tip the balance in favor of higher
rates of evolution in larger populations, from Equation 5.1 it can be seen that the
contribution of beneficial mutations to increases in fitness scales with the square of
the selective advantage, s2. Thus, because average s is typically � 1, broadening
the window of mutational availability will have a less than linear effect on the rate
of adaptation unless the pool of mutations is strongly skewed towards those with
small fitness benefits. Moreover, recall from Chapter 4 that there is a nearly inverse
relationship between Ne and the mutation rate (µ). From Equation 5.1, such a
compensatory effect would yield near independence of the rate of adaptation and
Ne, other than the potential expansion of the window of exploitable mutations.

A final consideration of the factors influencing rates of adaptation involves the
matter of time scale. The previous derivations consider the rate of adaptive evolu-
tion on a per-generation basis. However, smaller organisms typically have shorter
generation times, which will elevate the rate of evolution on an absolute time scale.
For example, if the generation length scaled inversely with Ne, this would render
the expected rate of evolution (Equation 5.1) on an absolute time scale proportional
to N2

e . The following simple argument supports the idea of such a generation-time
effect. Recall from Figure 4.3 that across the Tree of Life, Ne varies by about five
orders of magnitude, from ∼ 104 for some vertebrates to nearly 109 for some bacteria.
Generation lengths in bacteria tend to be on the order of 0.1 to 1.0 days, whereas
those in vertebrates and land plants are generally of order 102 to 104 days thus span-
ning nearly five orders of magnitude in the opposite direction of Ne. There can, of
course, be considerable variation in generation lengths among organisms with the
same Ne, but a general negative relationship between Ne and generation length is
not in question.

Taken together, for simple adaptations involving mutations with additive effects,
the above observations point toward the potential rate of evolutionary change (per
absolute time unit) being greater for organisms with small size, short generation
times, and large Ne. However, whether the scaling of evolutionary potential with Ne
is sublinear, linear, or superlinear remains uncertain. Moreover, as will be discussed
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below, for evolutionary changes involving interactions among loci, the scaling of
evolutionary rates with Ne can deviate from that described above.

Before proceeding, two other points merit discussion. First, although the quan-
tity 2NeUbs is a measure of the expected number of long-term fixations per unit
time (for haploids), because mutation and fixation events are stochastic, consid-
erable variation is expected around this expectation. For a Poisson process, where
each rare event is independent of the others, the variance in the amount of long-term
change among replicate populations is equal to the expectation. If, for example, the
time interval under consideration is long enough that one beneficial mutation is ex-
pected per lineage, the probability that one event actually accrues is just 0.368, but
the probability of no fixations is also 0.368, of two is 0.182, of three is 0.061, and of
four or more is 0.021. The central point is that considerable variation is expected
among lineages exposed to identical selection pressures, and that such dispersion
should not be taken as evidence of adaptive differentiation or of intrinsic differences
in evolutionary potential. Foundations 5.1 provides an even more dramatic example
of how divergence among populations exposed to identical selection pressures can
exceed that expected under neutral drift.

Vaulting Barriers to More Complex Adaptations

To this point, we have been assuming that the fitness effect of an allele is independent
of the genetic background on which it resides. Under this view, Equation 5.1 provides
the simplest possible model for the rate of adaptation by new mutations, as prior
fixations have no bearing on subsequent events. However, this assumption can be
violated for at least two reasons. First, for the case of stabilizing selection for an
intermediate optimum phenotype or directional selection up the edge of a fitness
plateau, the fixation of a mutation will alter the selection coefficients of future
mutations by moving the mean phenotype closer to the optimal state, reducing the
capacity for further improvement.

Second, when mutations have epistatic effects (i.e., interact in a nonadditive
fashion), the possibility exists for neutral or even deleterious mutations to become
beneficial in certain contexts. Multilocus traits exhibiting the latter types of genetic
behavior will be referred to here as complex adaptations, as the paths for their
evolution and the rapidity with which they are acquired are much less obvious than
under conditions of additive fitness effects.

One broad category of complex-trait evolution involves compensatory muta-
tions, wherein specific single mutations at either of two loci cause a fitness reduc-
tion, while their joint appearance can restore or even elevate fitness beyond the
ancestral state. Such epistatic interactions play a prominent role in Wright’s (1931,
1932) shifting-balance theory of evolution, which postulates that adaptive valleys
between fitness peaks are typically traversed by random genetic drift in a small
subpopulation, with the locally fixed advantageous genotype then being exported
to surrounding demes by migration. Compensatory mutations appear to play im-
portant roles in protein-sequence evolution (Chapter 12) and in the composition of
nucleotides in the stems of RNA molecules (Stephan and Kirby 1993; Kondrashov
et al. 2002; Kulathinal et al. 2004; Azevedo et al. 2006; DePristo et al. 2007; Breen
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et al. 2012; Wu et al. 2016). Situations likely also exist in which mutations that are
effectively neutral in isolation yield an increase in fitness when combined, and many
other scenarios are possible, including the involvement of intermediate pathways
that allow the bypass of shorter but deleterious pathways (Figure 5.3).

As complex adaptations are expected to evolve over relatively long periods, and
to be accompanied by numerous mutations (some drivers and some passengers), es-
tablishing the molecular paths of establishment from patterns in comparative data is
challenging. However, clear examples observed in real time do exist. For example, in
a long-term (> 40, 000 generation) evolution experiment with E. coli simply selected
for growth in flasks on a defined medium, the ability to utilize citrate as a carbon
source emerged in one of twelve cultures (Blount et al. 2008; Quandt et al. 2014).
Drawing from the historical record of evolution by resurrecting frozen samples, it
was found that a weak variant for citrate utilization with a promoter-region muta-
tion provided a potential mutational target for further refinement of the trait. While
this initial mutation was still infrequent in the population (and possibly effectively
neutral), a linked mutation appearing at a second locus conveyed a much greater
ability to uptake citrate, conferring a substantial increase in fitness that drove the
double mutant to fixation.

Sequential fixation vs. stochastic tunneling. Ascertaining the population-
genetic conditions under which complex adaptations are likely to occur is challeng-
ing because unlike the situation in which a single mutation fixes at a rate depending
only on its own initial frequency, the success of a mutation involved in an interlocus
interaction depends on the frequency of alleles at the interacting locus, on the fit-
nesses associated with all possible multi-locus genotypes, and on the recombination
rate between the two loci.

The focus here will be on the rate of establishment of a complex adaptation,
defined to be the inverse of the expected arrival time of the ultimate multi-mutation
configuration destined to be fixed in the population. Although this excludes the
additional time required for fixation, the latter will generally be considerably smaller
than the time to establishment.

Population size alone can dictate the kinds of evolutionary pathways that are
open to the establishment of complex traits (Figure 5.4). For populations of suf-
ficiently small size, the path toward adaptation almost always involves sequential
fixations of the contributing mutations, owing to the extreme rarity of occasions in
which multiple mutations are simultaneously segregating at key sites. Consider, for
example, an adaptation involving two mutations, the first of which is neutral (Walsh
1995; Lynch and Abegg 2010). The mean time for a new neutral mutation to fix
is 4Ne generations in a diploid population, with an average frequency during this
period of 0.5 (which implies an average 0.5 · 2N = N copies), and from the theory
outlined above, the rate of appearance of second-step mutations destined to fix is
then µ2 · 2s(Ne/N) per mutational target per generation, where µ2 is the rate of
second-step mutation. The product of these three quantities gives the approximate
probability of a secondary mutation arising on a segregating first-step mutation
background (and also being destined to fix) of 4Ne ·N · u2 · 2s(Ne/N) = 8N2

eµ2s. Set-
ting this equal to 1 and rearranging shows that there is a negligible chance of arrival
of a successful secondary mutation before fixation of the first if Ne � (8µ2s;−1/2.
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With µ2 = 10−9 and s = 0.01, for example, the critical effective population size is
' 105. For Ne below this threshold value, selection is restricted to exploring the
fitness landscape by single mutational steps (sequential fixations).

In contrast, key secondary (and even tertiary) mutations can arise in large
populations prior to the fixation of earlier-step contributors (Figure 5.3). This raises
the possibility of the joint, simultaneous fixation of combinations of mutations as
a single haplotype without any mutation having been common in isolation. For
example, a conditionally beneficial secondary mutation may arise in linkage with a
low-frequency deleterious first-step mutation, with the joint fixation of the double-
mutation haplotype in effect rescuing the first-step mutation otherwise destined
to be lost. Such a process, often referred to as stochastic tunneling (Komarova
et al. 2003; Iwasa et al. 2004), provides a smooth route for the establishment of
complex adaptations, allowing large populations to explore the fitness surface more
broadly than possible by single-step mutations. Most notably, the process makes
possible progression through intermediate deleterious alleles without the population
ever experiencing the transient decline in fitness that would necessarily occur with
sequential fixation (Gillespie 1984; Weinreich and Chao 2005; Gokhale et al. 2009;
Weissman et al. 2009, 2010; Lynch and Abegg 2010; Lynch 2010). The following
analyses will focus on the domain in which stochastic tunneling dominates, i.e.,
populations of moderate to very large size.

Before proceeding, it should be emphasized that the theory explored in the fol-
lowing paragraphs starts with the premise that each mutation contributing to a final
adaptation arises independently of all others. Recall, however, from Chapter 4 that
mutations often arise in clusters, such that if the mutation rate per site is µ, the rate
of simultaneous appearance of pairs of mutations on the same chromosome is often
orders of magnitude greater than µ2. This means that adaptations involving two or
three, and perhaps even more, site-specific mutations will often arise spontaneously
in a single individual on realistic time scales. In such cases, assuming negligible re-
combination between these sites, the rate of fixation of the mutant haplotype follows
directly from the single-mutation theory noted in the preceding chapter, Equations
4.1a,b.

Two-locus transitions. We start with a simple selection scenario, first explored
by Kimura (1985), in which haplotypes Ab and aB have reduced but equivalent
fitness (1 − sd) relative to AB and ab, both with fitnesses of 1.0 (Figure 5.3, upper
left). In this case, two-step transitions between pure population states of AB and
ab render no gain in fitness, but do involve an intermediate deleterious genotype.
Initially, the two sites will be assumed to be completely linked, and µd and µb will
denote the rate of mutation to first (potentially deleterious) and second (potentially
beneficial) step variants. (If sd = 0, the intermediate states are neutral).

As an explicit example, AB and ab might represent beneficial pairs of amino
acids involved in protein folding or stability, with Ab and aB representing nonmatch-
ing combinations. The Watson-Crick pairs in the stems of ribosomal RNAs provide
another compelling example. Although the overall stem/loop structure of rRNAs
is highly conserved across species, orthologous complementary nucleotide pairs in
stems often have different states in different species. Barring a rare double mutation,
such shifts require passage through an intermediate deleterious state, e.g., A:T →
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A:C → G:C. Provided the overall secondary structure is maintained, which is pre-
sumably essential for proper protein binding in the ribosome, rRNAs from different
bacterial species with up to 20% divergence can substitute for each other with only
small effects on fitness (Kitahara et al. 2012).

Starting with a population in state AB, we wish to determine the mean time for
the population to reach an alternative state of fixation at both loci, with respective
alleles a and b. Assuming that selection against the intermediate haplotypes is
sufficiently strong that fixation of such states is extremely unlikely, in the stochastic
tunneling domain mutation will recurrently introduce new Ab/aB alleles despite
their being selected against. Provided the strength of selection exceeds that of
mutation, both the aB and Ab haplotypes will then be expected to have steady-state
frequencies of µd/sd, resulting from the balance between the rates of mutational
input µd and selective removal sd (Walsh and Lynch 2018). These low-frequency
haplotypes then serve as reliable substrates for secondary mutations to the ab type,
as mutant ab gametes arise at rate µb from each of the 4Nµd/sd intermediate types
(there being two loci in N diploid target individuals). However, even though the
ab type has an advantage over its parental haplotype, Ab or aB → ab mutations
fix in an essentially neutral fashion with probability 1/(2N). This follows because
µd/sd � 1, so almost all resident haplotypes are of type AB, with equivalent fitness
to ab. Thus, the rate of establishment of the ab type by stochastic tunneling from
AB is

re '
4Nµd
sd

· µb ·
1

2N
=

2µdµb
sd

(5.2)

(Gillespie 1984; Stephan 1996). This rate is independent of population size (provided
the conditions for selection-mutation balance, 4Nesd � 1, are met, and ignoring for
the moment any population-size dependence of the mutation rate).

Next, suppose that the secondary mutation has advantage sb, such that the
fitness of the AB and ab haplotypes are 1 and 1 + sb, respectively (Figure 5.3, upper
right). Equation 5.2 must then be modified to account for the fact that the fixation
probability of the double mutant is no longer 1/(2N) but ' 2sb(Ne/N). This leads to

re '
4Nµd
sd

· µb · 2sb(Ne/N) =
8Neµdµbsb

sd
. (5.3)

As in the case of selectively equivalent end states, the rate of establishment scales
positively with the square of the mutation rate, but now also with the factor 4Neb,
which as noted above is the strength of selection scaled to that of drift. A key feature
of these stochastic-tunneling events is that they result in the fixation of mutations
that considered alone would be viewed as deleterious, but in doing so the population
never experiences a reduction in fitness because the first-step mutation experiences
enhanced fitness in linkage with the second. In this sense, deleterious mutations can
play a central role in evolutionary diversification.

Finally, consider the special situation in which first-step mutations are effec-
tively neutral, arising at rate µn per site, and fixing with probability 1/(2N) (Figure
5.3, upper middle). To obtain the expected rate of tunneling for the case of neutral
intermediates, we require the probability that tunneling occurs within a descendant
lineage of a first-step mutation before it becomes lost from the population. Under
the assumption that first-step mutations are absent at the outset of the process,
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again assuming complete linkage, this probability has been found to be approxi-
mately

√
2µbsb(Ne/N) in large populations (Komarova et al. 2003; Iwasa et al. 2004;

Weissman et al. 2009, 2010; Lynch and Abegg 2010). With two sites in a diploid
population, there are 4Nµn neutral first-step mutations arising per generation, so
the rate of establishment via tunneling is then

re ' 4Nµn
√

2µbsbNe/N = 4µn
√

2µbsbNeN (5.4)

The key observation here is that when the intermediate steps are neutral, the prob-
ability of tunneling scales positively with the absolute population size, contrary to
the situation with deleterious intermediates.

Note, however, that Equation 5.4 assumes the extreme situation in which both
first- and second-step mutations must arise anew. Given that first-step mutations
are actually neutral, there should be a nonzero probability of their being present at
some low frequency at the outset. Denoting this initial frequency as p0, and simply
substituting this for µd/sd in Equation 5.3 yields

re = 4Np0 · µb · 2sb(Ne/N) = 8Nep0µbsb. (5.5)

This is a potentially much higher rate of tunneling than implied by Equations 5.3 and
5.4, owing to the expectation that mutations at neutral sites are expected to have
much higher equilibrium frequencies than deleterious mutations. If, for example,
the genetic substrate here is a nucleotide site, assuming no mutational bias, the
long-term average frequency of each of the four nucleotide types is 0.25, yielding
re = 2Neµbsb, which is just half the expectation for the single-site model (because
one of the two potential starting nucleotides, out of four, is present at the outset).
This kind of scenario would apply to the situation in which a codon requires two
changes for a transition to a more beneficial amino-acid.

What can be inferred about the likely scaling of two-site adaptations from these
results? A key issue is that the algebraic scaling implied by the preceding expressions
is confounded by the nonindependent behavior of the biological components. Most
notably, as outlined in Chapter 4, there is a roughly inverse scaling between the
mutation rate per nucleotide site per generation and Ne across the Tree of Life.
Thus, treating the product of Ne and the mutation rate as an approximate constant
provides a more realistic view of how the per-generation rate of evolution scales with
population size.

Consider, for example, Equation 5.2 for the rate of transition between two equiv-
alent fitness states via deleterious intermediates. Although this expression suggests
that the evolutionary rate scales with µdµb, independent of Ne, because both mu-
tation rates scale inversely with Ne, the expectation is that re will actually scale
inversely with N2

e . Extending this logic to Equation 5.3 for the rate of transition to
a higher fitness state through deleterious intermediates implies an inverse scaling of
re with Ne. On the other hand, Equation 5.5 for the rate of transition to a higher
fitness state through neutral intermediates implies a scaling that is independent of
Ne, as in the case of the single-site model.

The key point here is that the rate of exploitation of various kinds of evolutionary
pathways can depend critically on the nature of the adaptive change. Relatively
speaking, complex adaptations involving two sites and neutral intermediates are
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more likely in large populations, whereas those involving deleterious intermediates
are more likely in small populations. Recall, however, that simultaneous mutations
arise at two sites much more rapidly than expected by chance, and in this case, the
rate of origin of two-site mutants in Equation 5.3 becomes 2Nµ2, yielding a rate of
evolution equal to 4Neµ2sb. Provided u2 � µbµd, this rate will be much higher than
that expected by tunneling, and also implies a scaling independent of Ne.

More complex scenarios. While the above analyses assume an evolutionary
path to a final adaptation through just a single intermediate step, the routes to
many molecular/cellular modifications are more complex, with a variety of potential
pathways through any number of mutations, e.g., Figure 5.3 (bottom). The rates
of establishment under these alternative scenarios have been examined by Gokhale
et al. (2009), Weissman et al. (2009), and Lynch and Abegg (2010), again with
the primary focus being on situations in which the intermediate states are neutral
or deleterious. Simple analytical approximations have been found in only a few
cases, two of which are considered below. The primary focus again is on how the
establishment rate re scales with the underlying features of population size, mutation
rate, and selection intensity.

For the case of deleterious intermediates, suppose that all haplotypes involving 1
to d−1 mutations are equally deleterious (with fitness 1−sd), with the final mutation
conferring an advantage sb. First-step mutations then arise at rate 2Ndµd, but owing
to selection have an expected survivorship time of 1/sd generations, during which
period d − 2 additional intermediate step mutations must be acquired, followed by
the appearance of a final-step mutation destined to fixation. This leads to a rate of
establishment via tunneling of

re ' 4Ned!(µd/sd)d−1µbsb (5.6)

which reduces to Equation 5.3 when d = 2. Here we see that re scales with the
dth power of the mutation rate, owing to the limited opportunities for mutation
during the short sojourn times of deleterious mutations. Thus, the acquisition of
a novel adaptation involving multiple, deleterious intermediate steps is a very low
probability event, diminishingly so for populations with large Ne, as the expected
scaling is now with N1−d

e . Again, however, multinucleotide mutations are likely to
dramatically accelerate this process.

For the case of neutral intermediates with d mutations required for the final
adaptation (and the order of events assumed to be irrelevant), there is again the
conceptual issue of the starting conditions. The worst-case scenario is the one in
which all contributing mutations are absent at time zero, with establishment then
requiring a series of nested tunneling events. For example, for the case of d = 3 (with
two neutral mutations required before the final adaptation is assembled with a third
mutation), a secondary mutation must arise on a haplotype lineage containing the
first mutation, and before being lost by drift, the still smaller two-mutation lineage
must acquire a third mutation destined to fixation. Equation 5.4 then expands to

re = 6Nµn
√

2µn
√

2µbsb(Ne/N) (5.7a)

Note that the first term is now 6Nµn because first-step mutations can arise at three
diploid sites. The next step then initiates at either of the two remaining sites,
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bringing in the 2µn term, with the final stage being initiated at the one remaining
site and fixing at the usual rate for a single beneficial mutation. With d = 4, this
expression expands one step further to

re = 8Nµn

√
3µn

√
2µn

√
2µbsb(Ne/N), (5.7b)

and so on.
These results show that with neutral intermediates, the rate of establishment

of complex adaptations can be much more rapid than expected under the naive
assumption that independently arising mutations would lead to a scaling with the
dth power of the mutation rate. Regardless of the number of sites involved in this
case, the rate of establishment by tunneling scales with no more than the square
of the mutation rate. Adhering to the empirical observation of an approximately
inverse relationship between mutation rates and population size, and it it is assumed
that N ' N2

e (which is very roughly in accord with the data in Chapter 4), the rate
of establishment is entirely independent of Ne regardless of the number of required
neutral intermediates. If it can be assumed that (d − 1)-stage mutants are present
at some low frequency p0 in the base population, Equation 5.5 applies, which again
implies N-independent scaling.

Finally, it should be noted that the above examples are just a small sample of the
kinds of evolutionary pathways that can exist between two complex genotypes. In
principle, multiple pathway types may connect two presumed endpoints, including
those with mixtures of neutral and deleterious intermediates, different numbers of
links, and so on. The kind of theory just outlined can be used to evaluate the
relative probabilities of alternative routes, as well as the possibility of becoming
transiently trapped at points with suboptimal fitness, and of back-tracking and
exploring alternative paths (McCandlish 2018). Experimental evolution studies with
microbes are being increasingly exploited to evaluate these issues (e.g., Lind et al.
2019; Rodrigues and Shakhnovich 2019; Zheng et al. 2019).

Effects of recombination. Finally, we note that all of the above analyses assume
an absence of recombination. In the sequential-fixation regime, recombination can be
ignored simply because multiple polymorphic sites are never present simultaneously.
However, in the stochastic-tunneling domain, opportunities will exist for both the
creation and breakdown of optimal haplotypes. Higgs (1998), Lynch (2010), and
Weissman et al. (2010) have examined this problem with a broad class of models,
reaching the conclusion that recombination is most likely to have either a minor or
an inhibitory effect on the de novo establishment of a complex adaptation.

Consider, for example, the case of a two-site adaptation with a deleterious in-
termediate, starting with a population fixed for the suboptimal ab haplotype. The
overall influence of recombination on the rate of establishment of the AB haplotype
will then be a function of two opposing effects. On the one hand, the rate of origin
of AB gametes by recombination between the two single-mutation haplotypes (aB
and Ab) will be proportional to the rate of recombination between the sites (c). On
the other hand, recombinational breakdown discounts the net selective advantage of
resultant AB haplotypes from sb to sb− c. This occurs because in the early stages of
establishment, ab haplotypes still predominate, and hence are the primary partners
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in recombination events with AB, generating the maladaptive Ab and aB products.
Thus, because the product c(sb−c) is maximized at c = sb/2, two-site adaptations are
expected to emerge most rapidly in chromosomal settings where the recombination
rate is half the selective advantage of the final adaptation, a rather specific require-
ment. Moreover, the domain for any improvement by recombination is quite narrow.
For example, when first-step mutations are deleterious, if the rate of recombination
exceeds the selective advantage of the AB haplotype (i.e., sb− c < 0), recombination
presents an extremely strong barrier to establishment of the AB haplotype. Even
in the case of neutral intermediates and at the optimal recombination rate, the rate
of establishment is generally enhanced by much less than an order of magnitude
relative to the situation with complete linkage (Lynch 2010).

Taken together, these results suggest that: 1) only a narrow range of recom-
bination rates (in the neighborhood of sb/2) can enhance the rate of establishment
of a complex adaptation from de novo mutations; and 2) overly high rates of re-
combination in large populations can be prohibitive. Thus, because the role that
recombination plays in the origin of specific adaptations depends on both the selec-
tive advantage of the final product and the physical distance between the genomic
sites of the underlying mutations, as discussed in Chapter 4, recombination is far
from universally advantageous.

The Phylogenetic Dispersion of Mean Phenotypes

The theory discussed above provides insight into the rapidity with which populations
can respond to novel and/or persistent directional selective challenges. Such scenar-
ios might be encountered in a continuous coevolutionary arms race between a host
cell and a pathogen, or in situations involving a sudden environmental shift. How-
ever, numerous cellular traits may have been under very similar selective pressures
across phylogenetic lineages since their origin. This is likely to be true, for example,
for enzymes whose sole function has always been to convert a specific substrate into
a specific product, membrane channels specialized to admitting and/or excluding
specific ions, or polymerases responsible for generating complementary base-pair
matches. Homeostatic mechanisms further buffer cells from external environmental
changes.

In such cases, the dynamical response to changing selection pressures is no
longer the key issue. The more appropriate evolutionary perspective is the long-term
steady-state probability distribution of alternative genotypes. Although natural
selection may relentlessly strive to improve trait performance, there are numerous
reasons why perfection will seldom, if ever, be obtained for more than transient
periods. First, absolute limits to the refinements of chemical and physical processes
can be dictated by diffusion limitation and by effectively discrete processes such
as the energy associated with individual hydrogen bonds. Second, the stochastic
processes of mutation and drift can result in the dispersion of mean phenotypes
around an expected value, to a degree that depends on the range of effectively
neutral parameter space. Third, mutation pressure will almost never be perfectly
aligned with the goals of selection, and this will cause the average phenotype to
deviate from an optimum, even in the absence of mutation bias.
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The latter two points imply that: 1) populations under identical selection pres-
sures will not have identical mean phenotypes, but instead will exhibit a dispersion
of such measures; 2) the most common phenotype need not be the optimum pheno-
type; and 3) gradients of mean phenotypes with respect to Ne are likely to be molded
by differences in the power of random genetic drift across the Tree of Life. To re-
duce the likelihood of evolutionary cell biology succumbing to the common practice
of interpreting all phylogenetic variation in phenotypes as necessary reflections of
differences in selective environments, these basic principles will first be sketched out
for the case of a very simple two-state trait, and then further explored for traits
encoded by multiple genetic loci.

Two-state traits. Consider a single-locus situation in which one allele (denoted as
state 1) has a fractional selective advantage s over another allele (denoted as state
0). Although allele 1 has the highest achievable fitness, this need not mean that it
is a perfect fit to the environment. Nor does it ensure that once achieved, allele 1
will be immune to replacement by the suboptimal type. The mutation rate from
allele 0 to 1 is denoted µ01, with µ10 denoting the reciprocal mutation rate, and the
population will be assumed to be haploid.

The simplest situation involves a population with a small enough effective size
that the waiting times between mutations destined to fixation are large enough
that there is effectively no polymorphism and the population is nearly always fixed
for one allele or the other, with probabilities p̃0 and p̃1. The conditions necessary
for such a situation are equivalent to those noted above for the sequential-fixation
model, with the more general model being outlined in Foundations 5.2.

Under these weak-mutation, strong-selection conditions, a lineage spends a long
period of time in one particular monomorphic state before making a stochastic shift
to another. The intervening intervals (waiting times for transitions) are functions
of the relative strengths of selection, mutation, and random genetic drift, but over
a very long time period, the rate of movement from state 0 to 1 must equilibrate to
equal that in the opposite direction (a principle known as detailed balance in the
statistical physics literature). This implies

p̃0 · (Nµ01) · φ01 = p̃1 · (Nµ10) · φ10, (5.8)

where φ01 and φ10 denote the probabilities of fixation of newly arisen beneficial and
deleterious alleles, defined by Equation 4.1b. Using the useful identity φ01/φ10 = eS ,

where S = 2Nes, and the fact that p̃1 ' 1− p̃0,

p̃0 '
1

1 + βeS
, (5.9)

where β = µ01/µ10 is the ratio of the mutation rates in both directions (mutation
bias being implied when β 6= 1).

This simple model illustrates three key points. First, unless completely lethal,
the low-fitness state has a non-zero probability of occurrence. Thus, despite constant
selection pressure, a lineage (or series of parallel lineages) is not expected to remain
in a stable fixed state. In fact, at equilibrium, the rate of 0 → 1 transitions is the
same as the reverse. This is because, whether favorable or encouraged by mutation
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pressure, the most abundant state provides more opportunities for transitions, which
are individually less likely to proceed to fixation; the rarer state provides fewer
transition opportunities, but when these arise they are more likely fix.

Second, the two alleles approach equal probabilities as βeS → 1. This composite
parameter is simply equal to the product of the mutation and selection biases in favor
of state 1, so that even if state 1 is selectively favored (S > 0), state 0 will be more
common if there is mutation bias in the opposite direction of sufficient strength
(β < e−S). The relevance of this point is that maximum divergence among fixed
lineages occurs if p̃0 = p̃1 = 0.5, again demonstrating the potential for substantial
variation in the face of uniform selection.

Third, if the effective population size and/or strength of selection is sufficiently
small that S � 1 (the domain of effective neutrality), the equilibrium frequency
of the disfavored allele will be entirely driven by mutation pressure. In this case,
because eS ' 1, p̃0 ' 1/(1 + β), which is entirely a function of the relative (but not
absolute) mutation rates.

These expectations are altered when the population-level mutation rate exceeds
the limits of the domain of the sequential model (Foundations 5.2). Most notably,
Equation 5.9 defines the lower bound to the expected frequency of the low-fitness
allele. The expected frequency of the beneficial allele declines once Neµ01 exceeds
∼ 0.01 (i.e., a new mutation enters the population at least every 100 generations),
asymptotically approaching the neutral expectation p̃1 ' β/(1 + β) as Neµ01 exceeds
1.0 (Figure 5.5). The latter condition arises when mutation brings in allelic variants
faster than natural selection can promote beneficial over detrimental alleles, and the
population is almost always represented by a polymorphic collection of both alleles.

Multistate-traits and the drift-barrier hypothesis. Extension of the preced-
ing single-locus model to an arbitrary number L sites (factors) yields additional
insights into the limits to what natural selection can accomplish. To appreciate the
fundamental points in a relatively simple manner, it will be adequate to assume
that all genetic factors are equivalent with two alternative (+ and −) allelic states
contributing positively and negatively to the trait. Depending on the context, these
factors may be viewed as single nucleotides, amino-acid codons, or entire genes. Al-
though there are L2 potential genotypic states, there is redundancy among members
of genetic classes containing the same numbers of +/− alleles.

For all but the two most extreme genotypes, a multiplicity of functionally equiv-
alent classes exists with respect to the number of + alleles, i, defined by the binomial
coefficients. As an example, for the case of L = 4, there are L4 = 16 possible geno-
types, but just five genotypic classes (i = 0, 1, 2, 3, 4, and 5), with multiplicities
1, 4, 6, 4, and 1, respectively (Figure 5.6). With equivalent fitness for all members
(haplotypes) within a particular class, this variation in multiplicity of states plays an
important role in determining the long-term evolutionary distribution of alternative
classes, as classes with higher multiplicities are more mutationally accessible. This
type of biallelic model has been widely exploited in theoretical studies of the genetic
structure of quantitative (multilocus) traits (Walsh and Lynch 2018), and will be
encountered in a number of different contexts in subsequent chapters, including the
evolution of protein-protein interfaces, transcription-factor binding sites, and growth
rate. Here, we will assume a haploid, nonrecombining population of N individuals.



18 CHAPTER 5

The site-specific per-generation mutation rates from the − to the + state, and vice
versa, are defined as µ01 and µ10, respectively.

As with the single-factor model, the multiple-factor model has a long-term equi-
librium distribution of population residence in the L + 1 alternative states. Again,
starting with the assumption that population-level mutation rates are low enough
that transitions only occur between adjacent classes, the relative flux rates between
classes are equal to the expressions on the arrows in Figure 5.6, which are pro-
portional to the products of rates of mutational production and probabilities of
subsequent fixation, with the numerical coefficients being defined by the numbers of
− and + sites within each class. The absolute population size N defines the number
of mutational targets per generation, but because N influences all mutational flux
rates in the same way, it is omitted as a prefactor, although both N and Ne do
influence the equilibrium solution via the fixation probabilities (Equation 4.1b).

This linear sequential model has a relatively simple solution (Berg et al. 2004;
Sella and Hirsh 2005; Lynch and Hagner 2014; Lynch 2020). As a reference point,
consider first the extreme case of effective neutrality. In this situation, η = u01/(u01+
u10) = β/(1+β) is the expected equilibrium frequency of + alleles at each site, which
arises when the net flux of + → − and − → + mutations is balanced. With no
selection for particular combinations of alleles, each site evolves in an independent
fashion, so the steady-state distribution of phenotypes under neutrality is simply
equal to the binomial probability distribution,

p̃n,i =
(
L

i

)
ηi(1− η)L−i

= C ·
(
L

i

)
βi (5.10)

where C = (1+β)−L. Denoting the overall genotypic state as the sum of + alleles, the
long-term mean and variance of the trait are Lη and Lη(1−η), respectively. Equation
5.10 defines the long-term probability of a population residing in each of the L + 1
possible genotypic classes, i.e., the fractional time wandering over the evolutionary
landscape that is spent in each class. Note that the neutral steady-state distribution
depends only on the ratio of mutation rates, not on their absolute values.

Selection transforms the neutral distribution in a remarkably simple way, with
each class being weighted by the exponential function of the scaled strength of
selection eSi , with Si = 2Nesi,

p̃i = C · p̃n,i · eSi , (5.11)

where C is a new normalization constant that ensures that the p̃i sum to 1.0. The se-
lection coefficients associated with each class are generally defined as deviations from
some benchmark in the population (say the optimum type), but this does not mat-
ter, as the reference is a constant that simply enters the normalization constant. The
utility of this approach is that, provided there are mutational connections between
all adjacent states, Equation 5.11 can be applied to any fitness function describing
the relationship between s and i.

Taken together, Equations 5.10 and 5.11 show that the equilibrium frequencies
of the genotypic classes are functions of three factors: 1) the multiplicity of con-
figurations, as defined by the binomial coefficients; 2) the ratio of mutation rates;
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and 3) the strength of selection scaled by the power of random genetic drift. All
other things being equal, the within-class multiplicity magnifies the likelihood of
residing in such a state. This demonstrates that mutation need not be directionally
biased to have an impact on the overall distribution. All that is required is that
neutral distribution not coincide with the expectations under selection alone, which
will almost always be the case.

Two examples will now be explored to illustrate how these three factors jointly
define the distribution of phenotypes within and among alternative population-
genetic environments. First, consider the simple case in which a trait determined
by just L = 2 factors is under stabilizing selection, such that there is an optimum
phenotype θ, with fitness dropping off at a rate determined by the width of the
fitness function ω (analogous to the standard deviation of a normal distribution).
This Gaussian (bell-shaped) function is defined by

Wi = e−(i−θ)2/(2ω2). (5.12)

With two sites, there are three possible genotypic classes, i = 0, 1, 2, with the pheno-
typically equivalent +− and −+ states being lumped into the i = 1 class. Selection
is purely directional if the optimum is at or beyond an end state, i.e., θ ≤ 0 or ≥ L,
and neutrality is approached as the fitness function becomes flatter, i.e., ω → ∞.
Although i is confined to integer values, θ need not be, and if θ is outside of the
(0, 2) range, the optimum is unattainable. The selection coefficients can be simply
defined as deviations of fitness from the maximum value of 1, si = 1−Wi. The mean
phenotype is p̃1 + 2p̃2, which reduces to 2η in the case of neutrality.

This expansion to a second site introduces complexities not encountered with the
one-site model (Figure 5.7a). For example, for the case of θ = 1.5, where the optimum
is straddled by the class 1 and 2 genotypes, assuming mutation bias towards − alleles,
the long-term genotypic mean never reaches the optimum, even at very large Ne, and
instead remains much closer to 1. This bias results because although the class 1 and
2 genotypes have equivalent fitness, mutation pressure towards − alleles weights the
frequency of class 1 by a factor of 2β (the two being the multiplicity of this class),
but class 2 by the smaller factor of β2 (from Equation 5.10)

For the case in which θ = 2 (pure directional selection), there is a progressive
succession of the prevailing genotype classes with increasing Ne (Figure 5.7b). When
Ne is sufficiently low to impose effective neutrality, class 0 predominates owing to
the mutation bias towards − alleles. With increasing Ne, selection becomes more
effective at promoting class 1, but there remains effective mutation pressure against
class 2. Finally, with very large Ne, selection becomes efficient enough to drive class
2 to near fixation, thereby decreasing the incidence of class 1. These results show
that in the face of a constant pattern and strength of selection, the genotypic mean
can exhibit a considerable gradient with Ne owing entirely to changes in the power
of drift. They also show that appreciable incidences of all three genotypic classes
can be expected over time in lineages with intermediate Ne.

As a second example, consider the case in which a large number of loci contribute
in an additive fashion to the expression of a trait such as growth rate, with fitness
declining with the number of − alleles in a multiplicative fashion,

Wi = (1− s)(L−i), (5.13)
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where i is the number of beneficial (+) alleles in the genome. Three examples are
shown in Figure 5.8 for different numbers of contributing loci. In each case, the
overall performance is equally subdivided across all L factors, such that s = 1/L,
with L = 104, 105, and 106. With such large numbers of loci, the analytical solution
noted above is not reliable at large Ne, as the number of mutations arising per
generation may exceed the limit of the domain of the sequential model, although
results have been obtained by computer simulations (Lynch 2020).

Three general features are clear (Figure 5.8). First, as already noted, at Ne
sufficiently small that the mutational effects are rendered effectively neutral, the
mean fraction of + alleles is defined by the neutral expectation, with the probability
of a + allele being η at each locus.

Second, with increasing Ne, the mean fraction of + alleles progressively increases,
converging on 1.0 as Ne becomes much greater than 2s. This gradient in trait means
with Ne is a result of the drift barrier, which increasingly compromises the ability of
natural selection to alter the frequencies of mutations as the population size declines.
The exact location of the drift barrier is defined by the relative power of drift and
selection, becoming shallower with smaller s. It is also influenced by the mutation
bias towards alleles with deleterious effects and by the multiplicity effect.

Third, the observed gradients are much shallower than the expectations under
free recombination. This illustrates the point made above that owing to selective
interference among linked loci, populations behave genetically as though they are
much smaller than implied by their actual size N. For example, in the absence of
selective interference, sites with selection coefficients equal to 10−5 are expected to
be nearly fixed for + alleles once the absolute population size exceeds 500,000, but
with linked loci at the same absolute population size, the vast majority of alleles are
of the − type owing to the combination of mutation pressure and random genetic
drift (Figure 5.8).

These results highlight the riskiness of an evolutionary biology that simply
assumes that all phenotypes simply reflect optimal outcomes dictated by natural
selection, with any deviations from optimality being consequences of unavoidable
biophysical constraints. In addition to the pervasive influence of drift, mutation
can cause mean phenotypes to deviate from the optimum in substantial and often
unexpected ways that are not simply functions of the magnitude of mutation bias.
Rather, when alternative, functionally equivalent underlying genotypes exist for a
trait, the multiplicity of certain intermediate combinations can result in a muta-
tional pull of the mean phenotype away from the optimum. This effect becomes
especially significant when the phenotypic optimum is far from the expected mean
under mutation alone, especially if the level of multiplicity for the optimum is rel-
atively small relative to other phenotypic states. Moreover, cases may even exist
in which the opposing pressures of selection and mutation are sufficiently strong
that the equilibrium mean-phenotype distribution can have two peaks, one driven
by selection and the other by mutation (Lynch and Hagner 2014; Lynch 2018).

Notably, the direction and magnitude by which genotypic means scale with Ne
is not simply a function of the pattern of selection and mutation bias, but is also
influenced by the granularity of the system, i.e., the magnitude of mutational effects
(Figure 5.8). As noted above, substantial evidence suggests that a large fraction of
mutations have effects small enough that these issues do matter. One of the most
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striking examples consistent with the drift-barrier hypothesis is the negative scaling
of the mutation rate per nucleotide site with Ne observed across the Tree of Life
presented in Chapter 4.

Summary

• Critical to understanding the evolutionary potential and limitations of phyloge-
netic lineages is information on the distribution of fitness and phenotypic effects
of new mutations. Multiple lines of evidence indicate that the vast majority of
mutations have deleterious effects, most being very mild, and the mode effect be-
ing near zero. There are statistical limitations to discerning the fine-scale features
of the distribution of mutation with small effects, but there is strong evidence for
a substantial pool of mutations that are only available for evolutionary exploita-
tion in species with large effective population sizes (Ne). These mutations play
a key role in defining the limits to adaptation in different phylogenetic lineages.

• Despite the common view that populations under identical selection pressures
will tend to be highly similarly phenotypically, many plausible situations exist in
which uniform selection combined with random genetic drift can lead to substan-
tial interspecies divergence, sometimes more than expected under drift alone.

• Many molecular adaptations require the co-occurrence of two or more mutations
to elicit a phenotype with elevated fitness. Theory suggests that the rapidity (per
generation) of acquiring such adaptations is roughly independent of Ne if the in-
termediate states are neutral, but scales negatively with Ne if the intermediate
states are deleterious, and more rapidly so with more intermediate steps. This
is one example of how the likelihood of alternative paths of evolution are mod-
ulated by changes in Ne. Such scaling, however, may be radically changed with
sufficiently high rates of multinucleotide mutation, as this will instantaneously
embark a complex genotype on a more rapid path to establishment.

• Many cellular traits have retained the same function for hundreds of millions of
years, and may have been under nearly invariant selection pressures for this same
amount of time. This shifts the evolutionary focus away from dynamical changes
in allele frequency under directional selection to the long-term steady-state proba-
bility distribution of alternative phenotypic states in constant population-genetic
environments. Motivated by the evidence for a large pool of mutations with
small effects, the drift-barrier hypothesis predicts that mean phenotypes of traits
will commonly exhibit gradients with respect to Ne, with the level of functional
refinement increasing with the latter.

• Mutation has a fundamental influence on the expected distribution of mean phe-
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notypes because genotypic states differ in the multiplicity of ways in which they
can be constructed from the underlying set of genetic loci. Mutation bias further
influences the evolutionary attraction towards a particular region of phenotypic
space, in ways that may conflict with or reinforce prevailing selection pressures.

• Taken together, these results from evolutionary theory call into question the
common habit of assuming an essentially perfect match between mean phenotypes
and prevailing selection pressures. Often, the most common phenotype is an
unreliable indicator of the optimum defined by natural selection.
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Foundations 5.1. Divergence under uniform selection. Although it is generally
thought that selection will increase the evolutionary determinism of a system, causing
pairs of populations under identical selection pressures to be more similar than ex-
pected on the basis of random assortment of variation, this is not necessarily the case
(Cohan 1984; Lynch 1986). Consider a pair of populations exposed to identical con-
ditions and starting with identical frequencies of two alleles, A and a, p and (1 − p),
respectively. Letting φ(p) be the probability of fixation of allele A, the probability
that a pair of populations will ultimately experience fixation for different alleles is
∆ = 2φ(p)[1 − φ(p)], which reaches a maximum value when φ(p) = 0.5. Under the
naive view that the beneficial allele always fixes, one expects φ(p) = 1 and ∆ = 0.

That populations can sometimes diverge to a greater extent under uniform selec-
tion than under pure neutral drift can be seen as follows. In the absence of selection,
the probability of fixation of allele A is simply p, and the probability of alternative out-
comes is ∆ = 2p(1− p). The probability of divergence is increased by selection if φ(p)
under selection is closer to 0.5 than the initial frequency p. Thus, because φ(p) > p
for a selectively favored allele, a minimum requirement for increased divergence under
pan-selection is that the starting frequency of the advantageous allele be < 0.5.

The conditions for excess divergence under drift plus selection to exceed that
under drift alone are not very restrictive. Consider two replicate populations with
identical initial frequencies of the A allele, p = 0.25. Under pure drift, the probability
that one replicate becomes fixed for A and the other for a is 2 · 0.25 · (1 − 0.25) =
0.375. Now suppose that A is weakly favored by selection, with Nes = 0.5. Again
assuming p0 = 0.25, Equation 4.1a gives the fixation probability of A as 0.46, implying
a probability of fixing alternative alleles of 2·0.46·0.54 = 0.496. Divergence is increased
by the action of selection, which in this case moves the fixation probability very close
to 0.5. Thus, even when under identical directional selection pressures, populations
that initiate with low-frequency, advantageous alleles can exhibit levels of divergence
conventionally interpreted as being associated with diversifying selection.

Foundations 5.2. Mean probabilities of alternative alleles at steady state. A
concern with the sequential model outlined in the text is that populations of moderate
size are expected to reside in both fixed (monomorphic) and polymorphic states for
significant amounts of time. This would not be a problem if the frequencies of alleles
when monomorphic were the same as those while polymorphic, but such a condition is
only met in the special case of neutrality. This is because deleterious mutations that
are strongly inhibited from going to fixation can nonetheless maintain measurable
frequencies owing to recurrent mutational input. As population sizes increase, the
likelihood of residing in a polymorphic state necessarily increases, owing to the greater
total influx of variation per generation. Under such conditions, one can still inquire as
to the average frequency of a sampled allele over a long-term steady-state equilibrium,
but this average must also factor in all possible polymorphic states, ranging from allele
frequency (1/N) to [1− (1/N)] (for haploids).

Let P1, P0, and Pp denote the steady-state probabilities of a population being
monomorphic for the optimal allele (1), monomorphic for the suboptimal allele (0),
or polymorphic (p). Under the sequential model, P1 + P0 ' 1. Here, we make use of
a result from diffusion theory that describes the steady-state probability distribution
of allele frequency x for the deleterious state 0 (which is equivalent to the beneficial
allele 1 being present at frequency 1 − x), described more fully by Kimura et al.
(1963), Wright (1969), and Charlesworth and Jain (2014). Although actual allele-
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frequency distributions are discrete, with large N , the overall pattern can be accurately
approximated by the continuous distribution

φ(x) = CxU10−1(1− x)U01−1e−Sx, (5.2.1a)

where U01 = 2Neµ01, U10 = 2Neµ10, and the normalization constant

C =
Γ(U01 + U10)

Γ(U01) · Γ(U10) · 1F1(U10; (U01 + U10);−S)
, (5.2.1b)

ensures that integration of the distribution over the full range of allele frequencies
sums to 1.0. Γ denotes the gamma function, and 1F1 is the confluent hypergeometric
function. These two functions can be calculated numerically using series expansions
defined respectively as Equations 6.1.2 and 13.1.2 in Abramowitz and Stegun (1964).

The probability of being monomorphic for state 1 can be approximated by inte-
gration of the end class

P1 =
∫ 1/N

0

φ(x) · dx.

Because x is very small in this region, both (1− x) and e−Sx can be approximated as
1, leading to

P1 '
(
C

U10

)(
1
N

)U10

. (5.2.2a)

At the opposite end of the spectrum, using x ' 1 and e−Sx ' e−S yields the probability
of being monomorphic for state 0,

P0 =
∫ 1

1−(1/N)

φ(x) · dx '
(
C

U01

)(
1
N

)U01

e−S . (5.2.2b)

Here, it can be seen that the ratio P1/P0 obtained with this approach deviates from
the prediction of the sequential model, p̃1/p̃0 = (µ01/µ10)eS (inferred from Equation
5.9), unless µ01 = µ10. Although the details will not be covered here, it can be shown
that the probability of polymorphism, Pp = 1− P0 − P1, is only weakly dependent on
the magnitude of selection, and generally does not exceed 0.1 until Neµ01 > 0.01.

The average frequencies of the two alleles over the stationary distribution can be
obtained by weighting the frequency classes by their densities, Equation 5.2.1a, and
integrating over (0,1), which yields

p0 =
µ10 · 1F1[(U10 + 1); (U01 + U10 + 1);−S]
(µ01 + µ10) · 1F1[U10; (U01 + U10);−S]

. (5.2.3)

Foundations 5.3. The detailed-balance solution for the evolutionary dis-
tribution of alternative molecular states. Here we assume a linear array of
alternative molecular states, with population-level transitions only occurring between
adjacent states (Figure 5.6). For the latter condition to be met, each transition rate
must be sufficiently small that a population generally resides in one state for an ex-
tended period of time before fixation of a subsequent mutation leads to a switch
between states. Under these conditions, a relatively simple model defines the proba-
bility of residing in each class after a sufficient amount of time has elapsed to ensure
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occupancy over the entire distribution of states. At this equilibrium, for any particular
state, the rates of entry and exit must be equal, a condition is known detailed balance.
The overall form of the steady-state distribution depends on the full set of transition
rates and is reached regardless of the starting conditions.

Letting mi,j denote the rate of evolutionary transition from state i to state j, we
have a system of L+ 1 simultaneous equations (where L denotes the final state in the
series, which starts with index 0),

p0(t+ 1) = (1−m0,1)p0(t) +m1,0p1(t),

pi(t+ 1) = mi−1,ipi−1(t) + (1−mi,i−1 −mi,i+1)pi(t) +mi+1,ipi+1(t),

pn(t+ 1) = mL−1,LpL−1(t) + (1−mL,L−1)pn(t).

Assuming nonzero transition rates between all adjacent classes, the equilibrium solu-
tion (the steady-state probability of being in state i) takes on a simple, intuitive form
(Lynch 2013),

p̃i =

(∏i−1
j=0mj,j+1

)(∏L
k=i+1mk,k−1

)
C

(5.3.1)

where the first term in the numerator is equal to the product of all transition rates
pointing up toward the class, the second term is the product of all transition rates
pointing down toward the class, and C is simply a normalization constant that ensures
that all of the p̃i sum to one (it is equal to the sum of numerators for all i, and is
generally called the partition function).

For example, with four alternative states (indexed 0, 1, 2, 3), the equilibrium
probabilities become

p̃0 = m1,0m2,1m3,2/C,

p̃1 = m0,1m2,1m3,2/C,

p̃2 = m0,1m1,2m3,2/C,

p̃3 = m0,1m1,2m2,3/C,

where C is the sum of the numerators all four expressions. The steady-state prob-
abilities, p̃i, can be equivalently viewed as the proportion of time a specific lineage
spends in state i over a long evolutionary period, or as the fraction of populations
experiencing identical population-genetic environments that are expected to reside in
class i at any specific time.

In the context of the model introduced in the text, each coefficient can be viewed
as the product of the number of mutations arising in the population per generation
and the probability of fixation. Letting N be the population size, ui,j be the mutation
rate from allelic state i to j (where j can be only i − 1 or i + 1), and φi,j be the
probability of fixation of a newly arisen j allele in a population predominated by allele
i, the transition rates are equal to the products of the relevant numbers of new mutant
alleles arising per generation and their probabilities of fixation, i.e., mi,j = 2Nui,jφi,j
assuming diploidy (or one half that assuming haploidy). Because every coefficient
has the same prefactor, 2N or N , this can be ignored, reducing the coefficients to
mi,j = ui,jφi,j . (In the text, the ui,j are functions of per-site mutation rates and the
number of sites relevant to the particular transition).

A second key simplification arises from the behavior of the probability of fixation
in opposite directions between adjacent states. Letting si denote the selective disad-
vantage of allele i, measured relative to a perfect fitness of 1.0, then si+1 < si implies
that allele i + 1 is beneficial compared to allele i. Assuming mutations with additive
effects on fitness, application of the formula for the fixation probability of new mu-
tations, Equation 4.1b, yields the convenient result that φi,i+1/φi+1,i = e4Ne(si−si+1)
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for diploids (with a 2 substituted for the 4 in haploids) (Sella and Hirsh 2005; Lynch
2013; Lynch and Hagner 2014).

As a simple application of the preceding methods, consider the situation in which
there are just two alternative states, A and B, with the mutation rate from A to B
being u, from B to A being v, and s being the selective advantage of B (negative if
B is disadvantageous). The combined mutation/selection pressure towards B is then
uφA,B , while that towards A is vφB,A, implying that

p̃B =
uφA,B

uφA,B + vφB,A
, (5.3.2a)

where the denominator is the partition function. Dividing all terms by vφB,A, and
using the relationship just noted for ratios of opposite fixation probabilities for diploids,
leads to the simplification

p̃B =
(u/v)e4Nes

(u/v)e4Nes + 1
. (5.3.2b)
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